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ABSTRACT

Conventional parsing techniques use grammars as embedded
procedural knowledge bases in mechanisms which are capable
of translatinag words in the language defined into egquivalent
parse trees. The aporoach described 1in this paper uses
cantext=free grammars as data allowing access to synthesis
templates which enable the user to create and interact with
parse trees directly, The advantages of this aporoach are
the utility of human-oriented grammars, the dynamic¢ inter~
changeability of language definitions, immediate error re~
iection, and the ability to handle partially complete parse
trees. The design for a orototype programming environment

using grammar~driven synthesis {s presented,
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I. INTRODUCTION

There is a great deal of interest in the improvement of
program and system develooment efficiency, primarily because
software costs have risen dramatically in recent years as a
fraction of total system development costs. One approacn to
the improvement of efficiency is the oprovision of an
ennanced set of interactive orogram develooment tools for
the programmer and the in¢creased automation of program
development, Many such efforts involve the notion of a
"orogramming environment", that is, an interactive
environment in which a wide selection of software tools is
provided as an integrated package, with a consistent and
relatively concise command structure. Typically, a means is
provided to allow the programmer to work within the language
being used for the program, without having to descend to the
object language level to perform any of the functions
necessary to create, modify, or test the program.

As a concrete example, the reader's attention is drawn
to the most wigely~-known integratedqd programming environment,
the APL system (iverson, 1962]. When using this system, the
programmer is able to perform all steps in the program
development process without ever having to issue explicit
commands to the host operating system. The AeL environqent

itself provides an integrated set of facilities for storing,

editing, and debugging modules which are arranqed in
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workspaces and libraries, access to which 1s availgble using
commangs that are part of the APL )anguage dgefinition
itselt. In addition, so far as the user is concerned, there
is no notion of transtating, linking, or )oading indiviaual
functions or programs, To the programmer the system appears
to be capable of evaluating programs written in APL without
translation, and al) ot the programmer's interactions with
the APL proqQqrams defined occur within the syntactic
framework of the original source language.

Other language=oriented programming environ@ents are
under development or in use, notably the ECL project at
Harvard [Wegbreit et. al., 19741, which is based on a LISP=~
like orogramming language, and the GANDALF project,
{(Habermann,1979), which is based on the new Department of
Defense 1language, ADA, Both of these projects are designed
to offer an environment which {8 even more intensively
syntax-oriented than that offered by APL. In addition,
these systems incorporate into an integrated environment a
wige ranqge of facilities normally proviaed by the host
operating system, The two human engineering igeas
motivating the design of sSuch systems are to free the
programmer from the necessity of learning two command
structures, and the ability to reference and access parts of
the modules being developed using the natural structure
imposed by the syntax of the lanauage in which they are

written,




One of the crucial problems wnich must Dbpe soived in
implemeh;ing such an environment is the need to provide more
or less continual access to the evaluable program structure
in a syntax-oriented fashion. Conceptually, the system must
"understand® tne syntactical structure of the program auring
its entire existence, not simply during the phase in which
it is entered into the system., Thusgs, the internal structure
of the program must be sufficiently complex to reflect the
syntax of the program at all ¢times, and facilities to
utilize this structure must be on=~line during the entire

period of program development. Since such 4 requirement

must be met for other reasons, a syntax-directed editor is-

often offered as the orimary means of program entry, Such
an editor utilizes the on-=iine knowledge of program
structure to allow additions, geletions, and modifications
of the program structure to be made basec on the natural
syntactical units of the program, rather than the more usual
line~oriented aporoach.

Qur research was originally motivated by this
application ftor syntax-directed editing, since the program
access algorithms for tne editor are the very routines
involved 1in program structure access throughout its life in
the programming environment. We wished to investigate the

task of generating 3 syntax=directed editor from a grammar

description, in the hopes that procedures for routinely




pertorming such a task couild be described in gener§l terms,
1t not altogether automatea. Ihe pelief that a set of
usoble rules coula be found was encouragea oy tne fact that
techniques for generating a functionally analogous system, a
| parser, from a BNF grammar description are well=ungerstood
and, in fact, frequently automated.

ihe technigues reoortea in this paper are fundamentally
very simple, but lie in a direction diametrically opposea to
those involved in parser gener@tion. A parser 'S8 a
mechanism tor taxking a correct word in some language, and
recregting the syntactical structure inherent in that word
from the grammar of the lanquage. Tnat this structure can
be deduced from what would otherwise be a meaningless string
ot symbols is a consequence of the fact that the programmer

used a3 grammar to create it that was equivglent to that used

by the creator of the parser. The program itself represents
a sequentialized version ot parallel. hierarchical

structures, one in the minad of the programmer, and the other

interngl to the computer system. The programmer has encoded

the structure 1into the message, and the parser is the
mechanism needed to decode it,

Viewed 1in this 1light, the use of a parser-based
translation system is a very odd solution indeead to the
probiem of entering a program structure into a computer
system for subsequent execution: it is as it a piano were

were to be moved it into a house by tearing it into small
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pieces, appropriately labelling each one, pushing the pieces d
through a mail slot, and relying on an automaton inside the
house to reassemble the pianoe This orocedure s |

notorigusly error-orone, and once accomolished, it is

extremely difficult for the programmer to gain access i1n 3
human=-oriented way to the actual structure built. Extending
the simile wused above, it is as if we could only confirm
that the piano had been reconstructed properly by listening
to the music emanating from the interior of the house after
the piano had been reassembled!

0t course, the historical cause for such a solution is
clear: most general=purpose computing systems, at the time

language translation technology was elaborated, relied

heavily on seguential, batch=oriented input mechanisms such
as card readers, and were |ike houses without front doors,
oniy mail slots. There was a driving need to invent such

mechanisms as parsers so that high=level programming could

ubhad al e

pe done at all,

However, with the increased reliance on interactive,

remote~=entry time=sharing fgcilities, a radically different
solution to the oproblem of program entry can be
investigated. The program structure can be inter?ctively |

built within the computer in the first place. Sucn a

solution obviates the neea for a parser altogether.
1
Instead, the editor and the programmer cooperate to build

the desired structure girectly. The qrammgticgl




specifications of the )Janqguage are not used indirectly, to
build a aecoder for an unnecessary representation, but are
used simoly as data to guyide an appropriate, direct ]
synthesis ot a well=structured program repregsentation,

This thesis describes such mechanisms in enough detai!
to serve as the oasis for the implementation of a language
independent program entry System, The system 13 Janguage

independent in the sense that data corresponding very

closely to the grammar of a context=free language 1tseif, in

the form of a tinite set of static “transformations™, is
directly interpreted by the system to form stryuctures well=
formed under that grammar. If the grammar data is changed,
the same system supports a new language.

We have adopted the term “grammar=driven syntnesis™ to
descrivbe the function ot the systems discussed in this
paper, in order to suggest the idea that grammars with a
rich set of operators are utilized as knowledge bases with
little or no pre=processing. This direct utilization of a

humanworiented grammar s toO be contrasted, for instance,

with the extensive pre—=processing required to derive
transition tables for driving a shift-reduce parser.

Chapter [I describes in very general terms several basic

mechanisms for performing such qrammar~driven syntnesis,
relating them to the fundamental idea of performing a valid
derivation under a context=free grammar, Chapter III

provides a further eladboration of these mechanisms, aimed

12




toward the more concrete goal of oeing able not only to
create, byt also to moadify ana delete parts of a
hierarchical program structure, in a syntactically
consistent way., Chapter 1V, which 1is something of a
digression, consiagers from the viewpoint of database design
how programs may be represented ang accessed as databases
guring modification and during storage or transmission from
one place or time to another. In Chapter V, a conceptual
description is presented of a prototype oOrogramming
environment, desianed to allow the programming language 1in
use to be changed by simply changing the Janguage
description installed in the system. This design is
concerned solely with the facilities for program
modification and entry, and is based on the assumption that
a means for describing in a relatively simple way tne
semantic content of the program structures to oe puilt can
be found. Finally, in Chapter VI, the results of the
research undertaken so far are summarized, anda some

suggestions for future investigations are mage,

13
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Il. GRAMMAR-DRIVEN SYNTHESIS

A, INTRODUCTION

In this chaoter, several models for grammar-driven
editors of increasing complexity are described in terms of
the theory of context=-free arammars., Etach editor receives
two sequences of input symbols, the first representing a
context=free grammar, and the second a series of commands
which guides the synthesis of a sentential form of the
grammar initially provided. The described mechanisms are
capable of wutilizing very general classes of context~free
grammars, including ambiguous and incomplete grammars as
well as grammars with useless productions (i.e., oroductions
which do not occur in the derivation sequence for any word
of the defined language.) For this reason, we adopt the view
that the fundamental product produced by sSuch a sSynthesizer
is a sentential form, possibly containing non=terminal as
well as terminal symbols.

The first syntax=directed editor oroduced oy the
research group along the lines outlined in this section was
written by B, MacLennan in November, 1980 in LISP and called
"A Universal Syntax-Directed Editor®. The orimary motiva-
tion for the analysis of grammar=driven synthesis presented
in this chapter was to perform an exhaustive review 0of the

algorithms employed and to connect them to the mathemgtical

1)
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theory of context~free grammars in such a way as to justify
the adjective "universal", as well as to provige reasonably
convincing informal arguments that no critical loopholes had
been missed. This technology for using @ grammar is com=
pared with conventional parsing techniques, and the feasi~-
bility of using such synthesizers as the foundation of a
system providing interactive access to a nierarchically
organized database (such as that representing an executable

program structure) is discussed,

B. GRAMMARS AND SENTENTIAL FORMS
It is assumed that the reader is familiar with the
Backus=Naur Form, or 8NF, notation for mathematical gram=
mars. Appendix A contains a formal gspecification for this
notational system, The basic concepts from the theory of
context=-free grammars used throughout this section are
adapted from [Hopcroft and Uilman, 1979]. The present sec-
tion is provided primarily for background and continuity.
A context=free qgrammar has the following elements:
«~ A finite set T of terminal symbols,
-« A finite set N of non-=terminal symbols,
disjoint from T,
== A finite set P of productions, each expressed
in BNF notation,
~= A designated target non-terminal t

included in N,

15
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In addition, for the grammar to be context-free, every pro-
é duction must be of the form ‘
< a > 1:2 X,

where X is a string (possibly empty) of terminal and non-

terminal symbols, and a is a non=terminal symbol. The acro-
nym "CFG" 1is commonly used to aboreviate the phrase

"context=free gQrammar", Throughout this chapter, we will

adopt the convention of using lower~case letters from the
beginning of the alphabet to represent non=terminal symbols, f
lower=case letters from the end of the alphacet to represent )
terminal symbols, and upper case Jetters to represent |
strings (possibly empty) of terminals and non-terminals,
Since we will be considering only context=free grammars, the
term “grammar” will always be understood to mean "contexte-

free grammar®™. We shall also assume that all grammars con=-

P RN

sidered are non-trivial, that is, that the sets T and P are
non=empty.,

1. Sentential forms,

The basic intuitive concept underlying the idea of a

context=-free grammar is the notion of derivation: the

replacement in a string of a single non=-terminal symbol! by
an equivalent s3tring of terminals and non<terminals as
specified by some production.

Let G = { T, Np P, ¢t } be a grammar, and let S(1)

and S(2) be strings of symbols. (We adopt the notational

convenience of using parenthesized 1{integers to subscript

16
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variable names.) Then we say S(}) derives S(2) in one steo,
it 3(1) and S(2) have the form
S(1) = xaZ, S§(2) = xYZ,
and there exists a production in the set P with the form
< a> =Y,
In this case, we write

S{1) => S5(2J).

In an analogous fashion, we may define the notion of
a leftmost derivation, for which the string X above contains
no non=terminal svmbols,

A string 8 is said to qerive a string S' in zero or
more steps, or simply derive a string S', if one of the fol=-
lowing conditions is true: either S = 8', or else there
exists a series of strings S(1), S(2), « ¢« « + S(n) such
that 8 => S5(1), S(1) => S{2), . . «+ S(n) => §5°', In this
case, we write

S *=> §',

A string W is said to be a sentential form of G 1 f
t *=2> W, where t is the target symbol ot t. A sentential
tform with no non=termina)l symbols is called a word. The set
of all such words is called the language defined by L. Such
a language is called a context-free language, or "CFL".

A grammar is said to be ambiguous 1f there exists a
word in the lanquage defined by the grammar with two or more

distinct leftmost derivations, There exist languages

!
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defined by a context-~free grammar that are inherently ambi-
guous:? that is, which cannot be defined by an uynambiguous
context=free grammar,

2. ARGOT notation.

Ahile BNF notation 1is convenient for theoretical
manipulations because it incorporates a single underlying
idea, that of replacement in accordance with a oroduction, a
more powerful notation for practical specification of
languages is desirable,

For our purposes, we will adapt a system of notation
called ARGOT notation, with a comcise yet powerful set of
replacement operators reminiscent of tne operators used in
the theory of reqular expressions. This notation was
developed as the core of a patternematching programming
language called ARGOT (MaclLennan 197S). In fact, we will
use a restricted version of this notation, Dbut it is
convenient to introduyce the full notation first ana then
restrict it as required, A formal description of ARGOT
notation {8 provided in Appendix A,

a. Rules ana ARGOT expressions.

In place of a set of productions, ARGOT uses a
list of named rules, each of the form:
name: expression,
Rule names perform the same role in ARGOT notation as non-
terminal symbols {n BNF notation; however, it is required

that each rule have a unique rule name.

18
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Terminal symbols or strings are denoted by
undertinining, use of boldface tvpe, or enclosure Dy auote
marks ("), whichever is apopropriate for the tvpeface avail-
able,

The colon corresponds to the BNF metasymbol
"s:=%, geparating the rule name from the expression denoting
how an occurrence of that rule name may be expanded. Rules
are terminated by periods to separate rules unambiguously,.

The expression half of a rule is an incefinitely
deeo hierarchy of elementary replacement operations and
sub-expressions, eventually terminating on the deepest lev~
els with terminal strings or rule names. Eacnh operator
allows a specific replacement ooperation, whicn mav De
thought of as being applied from the shallowest level of the
hierarchy agownward in a non-geterministic fashion, Thus, a
single ARGOT ruie corresoonds to a number of eauivalent BNF
productions,

b. Concatenation

The simplest replacement operator is that of
concatenation, or replacement of a single construct Dy a
series of sub=constructs. The concatenation ooperator is
denoted by simple juxtaposition. Concatenated expressions
may be grouped into a single construct and used as a sub=~

expression by means of parentheses, A single BNF production

expresses the same idea as a simple ARGOT concatenation

e ———
2
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(except that in ARGOT an "empty"” rule cannot occur). Thus,

the BNF production
<proaram> ::= program <identifier> <block> ,
1s equivalent to the ARGOT rule
program: "program®™ identifier block ".," .
The occurrence of a3 rule name means that that position in
the sequence is to be expanded as defined by the named rule,
while the occurrence of a terminal string means that that

position in the sequence is to be filled by the quoted

string.
c. Optional constructs.
An optional sub=expression is surrounded Dby
brackets. The meaning of this ooerator 1is that at the

specified point, the indicated sub-expression may either be
placed into the symbol string or omitted, Thus, the rule
statement: ( label ] action.
allows replacement of "statement”™ by either "labeil action”
or.by "action".
d. Alternation Operators.

Two alternation operators are oprovided, simple
and optional alternation, Simple alternation is denoted by
means of & list of sub-expressions separated by vertical
strokes and surrounded by curly brackets. The construct may
be expanded by choosing one of the sub-constructs as the
replacement. Thus, by the rule

digit: (0" }"1"}"2"},

20
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the rule name "digit" may be reclaced by any one of "0%,
"1", or "2".

The ootional alternation construct is denoted in
the same way as a simple alternation, except that square
brackets are used instead of curly brackets., This operator
allows replacement not only by any of the ingicated alterna~
tives, but also bv the empty string. For example, the rule:

sign: [ "+® | "e" )],
aliows the rule name "sign” to be replaced by "+*, oy "=",
or to be deleted (replaced by the empty string).
e, Iteration operators.

Three iteratjon operators are orovided. The
required iteration, or 3imple iteration, is denoted bv a
plus sign followed by a sub~-expression, This construct
allows replacement by one or more instances of the sub=-
expression. Thus, the rule

integer: ¢+digit.
means that an instance of “integer™ can be replaced Dby
"digit”, by "digit digit", by "diqit digit digit", etc.

Optional iteration, genoteo by the asterisk fol-
lowed by a sub-exoression, implies that the construct can be
replaced by zero or more instances of the sub-exoression,
Thus, the rule

astring: ="a",
allows expansion of the rule name "astring™ <to the emoty

string, or to any of the strings "a", "aa™, "asaa", etc.

21
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The final form of iteration, list iteration, 1S
denoted by surrounding two Sub-expressions with a sharp sign
on the left and three oeriods on the riant, [t aliows
replacement by one or more instances of the first sub-
expression, separated by instances of the second sub-
expression, Thus, the rule

list: 2 atom "," ... &
allows replacement of the rule name “list"™ by "atom", “atom,
atom®, "atom, atom, atom", etc.
f. Properties of the ARGOT notation.

The most important feature of the notation s,
that although it is richer in operators and in this sense
more expressive than BNF notation, it is not more opowerful.
A language is context~free if, and only if, it is expressi=
ble as a finite set of ARGOT rules. This can be shown Dby
reducing ARGOT to BNF notation, that is, by oroviding aigo=
rithms for transforming any finite set of context=free BNF
productions to an equivalent set of ARGOT rules, and vice=
versa, This congstructive proof is straightforward and unin=
formative, as the desired transformations are fairly evident
on an intuitive level.,

As originally defined, the camplete ARGOT opro-
gramming language, which allows syntactically~keyed computa~

tion as well as input and output parameters to be passed

between rules, has the full computational power of the

el




lambda calculus (MaclLennan 19751, The notational subset we
are here calling "ARGOT notation” does not have the full
power of the ARGOT langQuage defined in this reference.

The notation can also be regarded as a generali=-
zation of the notion of a regular expression. #ne may think
of a set of ARGOT rules as being a set of nameo regular
expressions, and then allow rules to refer to themselives
directly or indirectly to achieve the power of a contexte
free grammar, This notational similarity allows the simple
statement of a sufficient (but not necessary) condition for
the regularity of an ARGOT~defined language. If a finite
set of ARGOT rules can be arranged in such an order that the
right=hand side of each rule refers only to rules occurring
further down the list, the language defined 1is regular,
That this is so can be seen fairly readily. Such an order-
ing allows replacement of each rule name except for that of
the target by the right~hand side of each of the mamed rules
in a terminating sequence, The resulting single rule s
simply a regular expression with operators and terminal
strinags alone on the right~hand sige,

This result is of practical wuse, since if we
know that a language is regular, then we know that simple
(non=recursive) algorithms exist for oprocessing it. The
algorithms for orocessing it are considerably less compli=
cated than if the lanquage is context=free but not regular,

in which case some sort of recursive mechanism is required.
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3, Restricted ARGOY notation (R=ARGOT),

The full ARGOT notation, as described, has more
expressive power than required for the application we are
interested in, for two reasons:

= its indefinitely nested structure reauires recursive

routines to access the sub-expressions in a rule, and

= highly nested expressions are too complicated to ex=
oress easily~learned syntax units for the user,

That the notation allows indefinite nesting {3 imolied by

the fact that the notation itself is an inherently context-

free language., Since we shall be accessing the grammatical

descriptions of languages as databases, it is highly desir-

able to be able to describe and encode simole, efficient

access routines. In addition, a simpler notation will allow

us to conceptualize a given grammar as consisting of a col=-

lection of rules each of which is formatted in one of a tin=
ite number of ways.

nhat we would like is 3 notation that is expressible
as a regular expression (as is BNF motation) so that it is
easily processed, but retains an adeguate amount of expres-
sive power, These goals are met by appropriately restrict=
ing the nesting allowed within ARGUT expressions, The
resulting notation s calied R=ARGOT notation (for either
restricted or reguiar ARGOT).

The set of available operators is restricted to con-

catenation, required i{teration, simple alternation, list




iteration, and the optional ocerator. The other operators
are rendered superfluous by the nesting restriction,

R=ARGOT expressions (rule right-hand sides) may ope
simple or complex., A simple expresstion 18 a concatenation
of one or more terminal strinas, rule names, or ootional
rule names. A complex expression is an alternation,
required iteration, or list iteration. Any sSub=-expression
in anm altermation or iteration must oe a ruleename, The
first sub=expression in a list operation must be a rule-
name., The second may be either a rule-name or terminal
string.

The effect of these rules is to limit the number of
possible formats available for the grammar designer to a
small set. Alternations and simple jteration operators will
always be the topmost operator in a3 given rule expression if
they occur at all, and the operands will be simple rule-
names in such expressions, The list iteration operator must
also be topmost, and only the second operand may be other
than a ryleename, and if so, must pve a single terminal
string. Only if the concatenation operator is topmost may
the operands be alternations, and even i{n this case no
further onerators are allowed in the ruyle,

It is something of a surprise that such stringent
restrictions result in grammars that are reasonably well=~
oriented toward human comprehension. The rules that result,

when they are read informally, seem to express natural
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syntactic units., [t must oe admitted that an improvement n
human comprehengsibility might be attained by allowing one
level of nesting, However, the simplifications in the
rule=~access algorithms proviaed DYy naming each subD-
expression are 80 striking we have been led to retain K=
ARGOT as described here,

The lanQuages defined in Appendices A and B8 are
defined using the R=ARGOT notation. In particular, the
reader's attention is drawn to Appendix B, which contains a
grammar for the PASCAL programming language. Most of the
syntactic rules can be seen to correspond to natural syntac-
tic constructs within the language in a3 way that BNF oproduc~
tions do not.

One irritation encountered in the use of R=ARGOT is
the implicit requirement to rename terminal strings which
carry semantic information (that is, that occur as alterna~
tives within an alternation). Where we would like to write,
for instance, rules such as

string: ¢+ character,

.
L ]
.
3
N
3
-
.

character: { "a™ | "b"

we must instead write
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string: + character.

character: { a ! b ! &« « « V+ 2}

To avoid the necessity to provide a large number of trivial
rules renaming tokens, we shall assume the existence of a
facility in the system for escaping from the normal moae of
grammar~driven synthesis to predefined lexical synthesizers.
Such a facility is analogous to the separation of the
analysis task between the parser and scanner in a conven=
tional compiler, Thus, we will assume that predefined rules
exist with such names as "identifier", "integer”, "string",
etc. In the system to be implementead, these rule names
correspond to opredefined input scanners anad parsers avail=

able to the language implementer.

C. A SIMPLE GRAMMAR=DRIVEN STRING EDITOR

In this section, a simple mechanism is described caonable
of generating sentential forms from an input grammar in A9NF
notation, This mechanism serves as the fundamental model
for grammar-driven editing using interactive production

selection to direct the course of the synthesis,
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1. The Bagic Mechanism.

Ne may think of the basic mechanism, which will oe

hereafter referred to as a Grammar=0Oriven String £ditor

(GDOSE), as a myltitape Turing Machine with two input tapes,
labeled PHASE1 INPUT and PHASEZ2 INPUT, four internal tapves
labeled GRAMMAR, BUFFER, CURSOR, and PRODUCTION, and an out-

put tape labeled OUTPUT, The PHASE! INPUT tape contains a

context=-free BNF arammar, which is storea internally on the
GRAMMAR tape. The PHASEZ2 INPUT tape contains a series of
editing commands which will be more fully gescribed shortly.
The BUFFER tape is used as a work area to synthesize a sen-
tential form. The CURSOR ana PRODUCTION tapes are used to

hold indefinitely large integers which number the non-

terminal in the BUFFER currently being expanded, and the
production being applied from the GRAMMAR tape, respec- i
tively, The OUTPUT tape is provided simply as a conceptual
convenience: it is used to model the transfer of the final
form produced to secondary storage.
The operation of the mechanism is as follows:
a. Phase One == Copy and Check Grammar.

The PHASE]l INPUT tape is copied onto the GRAMMAR
tape. As this is done, the contents of the input tape are
parsed in accordance with the grammar listed in Apoendix A
for BNF notation. Since this gra '+ r is regular, the inout

tape can be rejected or accepted as a8 Jlegitimate context=

free grammar in a finite number of steps. Without loss of
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generality, we assume that the first production names the
target symbol as its left-hand side.
b. Phase Two == Initialization,

In phase two, the mechanism is used to generate
sentential forms via valid agerivation steps on the BUFFER
tape. Firgt, the target non=terminal i{s copieg from the
first production onto the BUFFER tape. 1Then the following
loop is executed. Each cycle corresponds to one step of a
valid derivation.

c. Phase Two == Loop.

A symbol i8 read from the PHASEZ2 INPUT tape. If
it is 'Q' (for 'Quit'), control is passed to the next step
beyond the loop.

It the order to quit s not received, two
integers are copied from the PHASE2 INPUT tape. These
integers are assumed to encode the relative position in the
buffer of the next non=terminal to be replaced, and the pro-
duction in the arammar to De used to replace it, goth of
the integers must be checked to pe sure that they reter to a
real non=terminal in the BUFFER and to a real production in
the GRAMMAR, [f they do, the left=hand side of the selected
production is checked to make sure it is the Same as the
selected non=terminal. It any of these checks fail, the
integers are simply ignored and the l1oop re=-entered from the
beginning. Otherwise, the 1indicated replacement is per=

formed. In detail, the mechanism performs the following
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steos,

First, an integer (suitably encoded) 1is read

from PHASEZ INPUT and placed in the CURSOR register., Sup-
pose this integer is N. The N'th non=terminal sympol on tne
BUFFER tape is located. It there is none, control is
returned to the top of the loop,

Another integer is then read from PHASEZ2 INPUT
and copied onto the PRODUCTION tape. Suppose it is M., The
M'th production is located: if there iS none, control is
returned to the top of the loop.

The heads are then moved to the N°'th non-
terminal on the BUFFER tape, and the left~hand side of the
M'th production, and the two non-<terminals compared, if¢
they are not the same, control is returnerd to the top of the
lo0p.

It they are the same, the right=hand side of the
M'th production is used to replace the N'th non=terminal on
the BUFFER tape, moving characters to the right to make roam
for the new symbols as needed.

Finally, control is returned to the top of the
loope.

ds Phase 2 ~= End.

The BUFFER tape i8 copied to U(UTPUT and the

machine halts, accepting.




e. Synopsis.

The algorithm described is nothing more than a
restatement, in somewhat more detailed terms, of the funda-
mental method for producing some valid sentential form under
a contextefree grammar., UVDeterminism has been introduced bv
using an additional input phase, which encodes, as the
gerivation proceeds, choices for the next non=terminal to De
expanded and the production to be used. Erroneous input
during this phase 1is ignored. This simple mechanism cap~-
tures the essential flavor of grammar=~ariven synthesis. nNe
may note that the contents of the PHASE2 INPUT taoce may be
obtained in sequence when they are needed, and are never
re=ysed, Thus, this input process serves as an entirely
adequate model for an interactive process, Throughout the
remainder of this section, we will assume that the "Phase
Two User'.is able to examine the internal state of the
machine 1in order to determine the current state of the syn=
thesis and decide what to do next. We make this assumption
to avoid cluttering the mechanism descriptions witn outout
routines, which do not have any impact on the current slate
of the synthesis in any event.

2. Properties of the GDSE.

The fundamental property possessed by the OGDSE s
that it never contains an invalid form in the BUFFER, and
that a PHASEZ2 INPUT string exists which will cause tne

machine to halt, accepting, with any desired sentential form




on the OUTPUT tape.
In one sense, these assertions are hardly suscepti=
ble to a convincing proof, since the mechanism is so0 oDVviI=*

ously related to the notion of valid derivation in the first

place that any proof is Jikely to be less convincing than
this intuition. The oroof can be carried through based on

an induction over the number of times the mechanism passes

throuagh the loop. Since the BUFFER contains a valid senten= i
tial form (the target symbol) when the loop is entered the f
first time, and each step in the Jloop either leaves tne b
BUFFER wunchanged or changes one valia form to anotner by
expanding a single non~terminal in accordance with a produc=
tion in tne inpyt grammar, the BUFFER contains a valid sen=
tential form whenever the loop is entered. When the 'G°
symbol is read, the last form generated is placed on the
QUTPUT tape prior to acceptance, (The machine may reject if
the 'Q' symbol is missing).

Given a desired sentential form, there exists some
valid derivation sequence, starting with the target symool,
such that each derives in one step the next, and the last is

the desired form. (There may be more than one such sequence

of steps)., Each step consists of selection of a non-
terminal in the last derivation, and its replacement by the
righte-hand side of some production. Thus, qiven tne list of

derivation steps, it is easy to construct a list of pairs of

integers for the PHASEZ INPUT tape which will recreate these
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steps in the BUFFER, Hence for any sentential form, there

exists s PHASE2 INPUT tace which wil)l cause that form to
appear in the BUFFER, Appending a '4' on this tape will
cause the machine to halt, acceoting, with the desired form
on the OUTPUT tape.

3. Discussion.

As previously mentioned, although conceptually sime
ple, the GDSE is the underlying model for al) of our more
elaborate grammar=-driven mechanisms. The GDSE plays a role
for grammar=driven synthesizers analogous to that olayed by
a8 Deterministic Push=Down Automaton (DPDA) for parser-based
systems, The tundamental simplicity of grammar-driven syn=
thesizers arises from the fact that thie underlying mechan=-
ism i3 a direct restatement, with determinism incorporated,
of the very notion of a sequence of steps in a valid deriva-=
tion. The resulting simplicity is to be contrasted with the
much more complicated "set of items"™ construction required
to generate the DPDA associated with a grammar, which causes
the relation between a grammar and its parser to be very
indirect (Aho and Uliman 1977). The GDSE utilizes the gram=-
mar directly to synthesize words, rather than wusing it
indirectly to produce a derivative mechanism able to decode
words,

Ne might note that we have allowed the output of the
GDSE to be any valid sentential form, not requiring it to be

composed of strictly terminal symbols. In other words, we
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are taking as the fundamental entity defined by a grammar, a
sentential form instead of a word., {(t is easy enough to fix
up the mechanism so that opefore nalting, it checks the
string in the BUFFER for non~-terminals and acceects only if
there are none. Our decision not to do so is basec on tne
philosophy that additional restrictions should not be intro-
duced 8o long as the ocutput without them is sensible. In
practical terms, a valid sentential form under a grammar for
a programming language corresponds to a partially complete,
yet welle=structured program, with the missing parts labeled
approoriately by non~terminal symbols. In fact, the avility
to deal with such "reasonable” partial programs is one of
the primary advantages of a programming system based on
grammar=deriven synthesis,

Retaining this capability yields an even more
interesting property. No oroblem develops iif the GDSE
encounters 3 non<=terminal in the right-hand sige of some
production which is undefined. Once this non=terminal is
copied into the BUFFER it can never be replaced, so once
this action has been taken a word will never be derived,
However, the use of an undefined non-terminal can vyield a
class of sentential forms. In the context of grammars
defining programming languages, the aescribed situation
might occur if some subset of the complete grammar for the
tarqget language was in use., The resulting form would be

meaningul, and lead to a complete program, once the complete
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grammar were defined.

Thus, we see that the class of grammaregriven syne-
thesizers to be described have the ability to deal intelli=
gently not only with partial programs, but also with
partially=complete grammars, in a natural way.

Finally, we note that ambiguous grammars present no
problem for the GDSE. If the inout grammar is ambiguous,
this simply means that there is more than one way to gen=
erate at least one sentential form,

The question that remains to be answered is whether
grammar=driven synthesizers can be used to synthesize more
interesting constructs than strings (for instance, some data
structure encoding the algorithm representead by the word,).

In addition, it is desirable to use a more human-oriented

input code. In the remainder of this chapter, first the
command, and then the synthesis caoabilities will De
improved, The resulting mechanisms will inherit the basic

properties of the GDSE, however, which remains our fundamen=

tal model for grammar~driven synthesis.

D. AN IMPROVED GRAMMAR=DRIVEN STRING EDITOR

In this section we imorove the Phase Two command mechan=
ism for the GDSE., The R=ARGOT notation is our primary tool
for doing this, .This notation provides for a concise and
human=oriented set of ruyles as the arammar definition,

allows automatic expansion of rule names when there i8 only
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one way for expansion to be done, and provides a framework
for selection of alternative expansion paths based on xeying
the desired alternative by means of a mnemonic keystroke.
Yet the regularity of the notation allows synthesis to
proceed in a straight-forward, non=recursive fashion, pri=
marily because the contents of the rule can be accessed by A
finite automaton., These properties are not coincidental,
since the desire to achieve them provided the oprimary
motivation for restricting the ARGOT notation in the way
chosen.

1. Rules and transformations.

Ne eventually would like to classify every possible
rule name replacement according to some finitely=-expressiblie
scheme, To this end, we distinguish between the terms
"rule” and "transformation”, For BNF notation, each produc-
tion can result in one, ana only one, transformation of a
non=terminal symbol to a string of symbols. For ARGUT and
R=ARGOT notation, in contrast, each rule may express more
than one such permissible transformation. The limited nest-
ing of R=ARGOT operators allows us to 1list all of the
transformations allowed for an R=ARGOT grammar in a finite
list.

In order to further reduce the set of transforma-
tions possible, we introduce a special class of symoois
which are assumed to be distinct from either rule names or

terminal strings, which we will call "e=symbols". They have
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the purpose of serving 3as oplace markers in a sentential
form, indicating points where optional strings formed
according to a particular transformation may be inserteaq,
ne will use three classes of such symbols, with the notation
"o(rule name)”, "i(rule name)", ana "l(rule name)". The

"i" and "1" will be used to encode the exact

characters “"o",
sort of transformation by which the symbo! can be replaced,
and the rule name argument will allow the mechanism to
access the symbols in the grammar by which they can be
replaced. Since their expansion is optional, for output
purposes we may think of all of these symbols as represent-
ing the empty string. When the buffer is to be copied to
output, these symbols are simply skipped.

Aith this notation in hand, we examine the four
sorts of R=ARGOT rules:? concatenations, alternations,
iterations, and list iterations,

Concatenations involve replacement of the rule name
by a sequence of terminal symbols, rule names, and optiona)
rule names, These elements must occur in order exactly as
specified in the rule, Any optional rule names are con=-
verted to the e~-symbol "o(rule name)" when they are encoun-
tered., Thus, the rule:

array=type: ( packed ! "array" "(" ranges "1" "ot" type.
allows replacement of the rule name <array> in the buffer by

o(packed) array [ <ranges> ] of <type>

(In this section, we shall delimit rule names in the puffer
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with angle brackets so tnat they cannot be confused with
terminal strings,) If the symbol "o(packed)" is never
replaced, this string would bpe copiead to the output tape
simply as

array [ <ranges> 1 of <type>
Ne see that a concatenation rule explicitly stands for a
single, invariant transformation, Imolicit in tne existence

of an optional field, however, is an additional transforma-

tion of the form :
o(rule name) => <rule name>
The use of an e~symbo! has allowed us to express wnat would
have been one transformation with an indefinite format, as
an indefinitely long (but finite) list of transformations,
each of fixed format, This notational trick will pe further
used in the next chapter to make the list of transformations
associated with a grammar even more regular.
Alternation rules are always of the form:
name: { namel |} named | ., ., . | Name=n }
and correspond to n transformations:!
<name> => <namel>
<name> => <nameld>
« o .
<pame> => <name=n>
Iteration rules correspond to two transformations: that per=
formed when the ruyule name is first replaced, ano that

corresponding to additional iterations. Thus, a rule of the
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form: "3
name: + namel

corresponds to the two transformations:

<name> => <namel> i( name )

i( name ) => <namel> i( name )

List 1iteration rules similarly consist of two

-
- .

transformations, A rule of the form:
name: B namel named ...
corresponds to the transformations:
<name> => <namel> 1 ( name )
1(name)=> <name2> <namel> 1 ( name ) {

2. Automactic synthesis., 4

Having listed all possible transformations, we may i
now determine which of them can be performed automatically, ‘
Given a ryle name, the type of rule is effectively comput-~
able from the form of the right=-hand side of the rule alone,
If the rule is an alternation, the user must be consulted in
order to determine which of the n possible transformations
is required. If the rule is a concatenation, there is only
one ©oossible expansion. If the rule is a simple iteration
or list iteration, the initial transformation 1is reqguired
and should be automatically performed. It may be recailed
that predefined rule names (such as "igentifier"™) ore
allowed in an R=ARGOT grammar to symbolize calls to prede-

fined input scanners. Such rule names do not aamit to expan=

39

2
2
3
S
i




sion by rule, but must be expanded by referral to the prede=
fined scanner which may solicit datz from the user. Hence,
predefined rules cannot bpe automatically expandea. fhere is
one other possibility: the rule name may be undefined, in
this case, no expansion of anv kind is possible.

Terminal symbolis, by definition, cannot be expandeg.
The e=sympols all require user attention so also cannot be
automatically expanded.

As a matter of terminology, we may classify sympols
in the buffer as bound, free, or transient,.

Bouna symbols are those which admit to no further
replacement, Thus, in our system undefined rule names and
terminal symbols are bound.

Free symbols are those which require a decision as
to whether or not they are to be replaced at all, or by what
transformation they are to be replaced. The free sympols
are thus names for alternation rules and predefinea rules,
as well as the e=-symbols,

The remaining symbols can be transformed by one, and
only one, transformation which is not optional, They
represent intermediate steps of a required replacement
sequence, may be automatically replaced without restricting
the range of words which can be formed from the sentential
form currently in the bufter, and thus may be regarded as
"transient” in the sense that they are retained only until

they are recognized and replaced by their equivalent




automatically, The transient symbols in the described sys-
tem are names of concatenations, iterations, and list itera-
tions,

Since the expansion of transient symbols can only pe
done in one way, at the beginning of each Phase Two l00Op we
would like to search the buffer for a transient symool and
expand each one found, continuing this process until tnere
all symbols are either free or bound. Unfortunately, for
unrestricted R=ARGOT arammars, there 1S no guarantee that
this process will terminate, I[f one can start with a con=
catenation, iteration, or list iteration rule and reach the
same rule by applying a sequence of rules not including any
optional or alternation rule, the described process may
never terminate. Therefore, we must restrict the grammar so
that no such cycles exist,

Fortunately, the existence or non-existence of such
cvcles can be effectively computed given an otherwise syn-
tactically correct R=-ARGOT grammar., This restriction is tne
only semantic constraint we place on R~ARGOT grammars for
the remainder of the discussion, The 1Jloss 1in expressive
power i8S not great, Such cycles correspond to recursive
expressions with no trivial case in BNF-agescribed languages,
and once entered, derive only forms with non=terminals and
never words,

mMith this restriction, which can be entorced Dy

checking the input grammar during Phase One, we now may
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allow automatic expansion of transient symbols during tne
oeginning of tne Phase Two loop orior to any fyrtner pro-
cessing with the understanding that such expansion is to oe
performeo unti) no transient symbols remain, With the gram=-
mar restricted as qgescribed, this process must always ter=
minate. Since the grammar is context-free, the order in
which transient svmbols are expanded is of no conseqQuence.
we will refer to the automatic expansion of aill transient
symbols until none remain as "autoscanning”

The addition of the autoscanning feature relieves
the Phase Two user of the burden o2f having to order expan-
sions that are required by tne arammar, The orice paia for
this facility is that only those forms can be produced which
consist entirely of bound and free sympols. In the context
of a programming language defined by a grammar, the sSystem
will now synthesize as much of the program as s 8syntacti-
cally deducible from the part of the orogram alreadv created
by the user.

As a concrete example, we display the results of
autoscanning the target symbol for the PASCAL grammar listed

in Appendix B
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program <identifier> ( <jdentifier> I<filelist> ) ;
o(labels)
o(constants)
o(types)
o(variables)
o(subroutines)
begin
<gstatement>
j(statements)
end,

3. Improved Cursor Control.

fhe next improvement to be described is a more use=
ful method of cursor placement.

From the analysis above, we see that after autoscan-
ning is performed, the buffer will contain only bound and
free symbols. By definition, ¢the onily symbols requiring
Phase Two input data for further expansion are free symbois,
since bound symbols admit to no expansion at all. It fol=-
lows that the cursor should always rest on a free symool.
If there are no free symbols, there are no symbols left to
expand in the buffer, and the loop may be left, the buffer
copied to the output tape, and the algorithm terminated. In
general, however, one or more free sSympols will pDe left in
the buffer at the end of autoscan., Wwe wish to allow the
user a means to move the cursor between them, and must also
decide what to do after the symbol indicated by the cursor
has been expanded. It should be clear that cursor movement
never has any effect on either the contents of tne buffer
nor on the valid derivations reachable at any point in the

synthesis. The first is true simply because cursor movement
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leaves the buyffer unchanged, and the second oecause of tne
context=-free nature of the expansion operation.

Accordingly, after autoscanning, if there are any
free sympols left, we allow the user to move the cursor back
and ‘arth by entering 2ero or more cursor control sympols
(represented by "=>" for movement right and by “<=" for
movement left),

The only question remaining is how to position the
cursor initially, and how to reposition it after a sympol is
expanded. We assume that after a symbol is expanded, the
buffer is autoscanned again to remove any new transient sym=
bols. If the section of the buffer replacing the expanded
svmbol now contains one or more free symbols, the cursor 1is
placed at the leftmost such symbol. Otherwise, it is placed
at the first free symbol in the remaining string of symbols.
If there are none, wraparound takes place and the cursor is
placed at the first free symbol in the old substring to the
left. Initially, the cursor is placed at the first free
symbol in the buffer,

4, Trangsformation Selection.

Finally, we address the prablem of c¢ausing an
ootional transformation to be applied, once the cursor has
been positioned as desired by the user.

From the discussions above, the cursor must pe rest-
ing on a free symbol, that is, at either a oredefined rule

name or the rule name for an alternation, or at an e=symbol

44




-

of type o,
the entry of a blank
indicating that an exoansion
cursor position.

name, control

\

or 1., To simplify the command languaqe moagel,

is then turned over to the

fined input scanner. If

ate transformation

cursor repositioned for

Finally,

tion, one

selected.,

keystrokes

if

included

of

Another symbol

Thus,

inclusion

trigger it,

statement:

The symbol

the symbol

and %0 on.

of

the cursor

many potential

we must extend the R=ARGOT notation

the keystroke for each alternative which will

is made,

is adoptea as the uniform

If the cursor is at a predefined

it is at an e=symbol,

another loop through

is at the rule name for an alterna=

is entered and this

in the rule body.

An alternation now looks like:

{ 'a' assignment

t 'i' {festatement

L]

}.

while-statement

'c' case-statement

will invoke the transformation

<statement> => <assignment>

the transformation

<statement>

> <while=~gstatement>

is to take place at the current

indicated prede~
the appropri-

the result autoscanned,

transformations

is matched to




Extensions to this simple system are easy to imple~

ment and desirable. In particular, a string of more than
one character could be allowed 25 xey. Some work has Dpeen
done in allowing a "tall=through" key, symoolized by * '' ",
which invokes the indicated transition upon any symbol which
does not occur anywhere ‘else in the list of alternative
keys, and reapplies the enterea symbol to the next alterna=-
tive generated. Such enhancements are not considered
further in the present work.

Thus, the only data which must be entered during
Phase Two are cursor control commands, which leave the syn=-
thesized string intact but move the cursor, ana invocations
of transformations, which consist of a single blank, fol=
lowed Dy nothing for e=symbol expansions (lists, iterations,
or optional field inclusion), by a context= depenaent keys-
troke for alternative selection, and by whatever i3 needed
by the appropriate input scanner for such items as identif-
iers, numbers, and the like,

S. Discussion,

Ae have now enhanced the capabilities of the GDSE on
the input side to allow string synthesis ariven by a numan-
oriented grammar, with a reasonably supple means of cursor
control and transformation selection, The resulting mechan-
ism still has the desirable properties of the GDSE: it can
accept virtually any context-free grammar (we have lost

those which contain irreducible recursions) and generate any




form dJderivable under that grammar (some of which are
automatically expanded), It is also still true that the
buffer never contains an incorrect sentential form,

The mechanism that has been descriveg in this sec-
tion is considerably simpler than that for a parser genera-~
tor. This simplicity is the result of allaowing interaction
between the user and the synthesizer during the stage when
the grammar of the language is available to the mechanism.
User-provided data is available to Quide a true top=down
synthesis of the desired word in the defined language.

The described system is highly wuseful in its own
right. It could be used, for instance, to prepare programs
for entry into a conventional system with the guarantee that
the orogram was syntactically correct. The compiler used
would not need the abilitv to handle syntactic errors (a
notably difficult design problem), In addition, since the
input grammar is interpreted, the Same editor could be used
for many different languages.

Ne want to do more, however, [n the next gsection,
we investigate one way to synthesize more complicated aata
structures using the grammar~-driven editor we have described

in this section,

E. TREE SYNTHESIS
So far, a8ll of the mechanisms described synthesize

strinas, In order to subsume the ideas alreaay developed

47

S e




under the general notion of tree synthesis, we first charac-
terize strings as a special sort of tree, We then adiscuss
the notion of parse trees, and generalize it to form tne
more qenera) class of derivation trees, of wnich botn string
trees and parse trees are a special case. Since trees are a
well=understood data structure, we shal)l not define them
formally but treat their general properties in an intuitive
fashion. For the remainder of this section we shall assume
that the algorithms necessary to ¢reate anag manipulate gen-
eralized (multi-children), ordered trees are freely avail-
able. Such trees consist of a finite number ot nodes, each
of which has a finite number of children occuring in an
ordered sequence,

In addition to having children, we assume that eacnh noae
may aiso contain an indefinite amount of symbolic i1ntorma=
tion. In particular, with each node may be assaociatea a
string called its label.

Those nodes of a8 tree with no children are its leaf
nodes. Since the tree is ordered, its leaf noages may also
pe ordered into a linear list. WNe assume that all of the
nodes of a synthesized tree may be examined and accessed for
the information they may contain.

1. Re=Interpretation of the GUSE.

In all of the work that follows, we use a syn-
thesizer that 1is formally identical to the GDSE., w~e shall

call such a mechanism a GDE, for Grammar=Oriven tditor. Thne
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action taken by those steps in the algorithm that actually
interact witn the BUFFER are re-interpretea as calls to
tree=manipulation subroutines. The BUFFER is now ccaceived
to contain, not strings of symbols, but appropriately imple=
mented orderea trees with Jlabeled nodes. Rather than
describing the algorithms involved to create, modify, and
traverse such structures in detail, we assume that mathemat-
ically correct subroutines are avairlable to perform the
needed functions, since methods for implementing trees using
a sequentialliy~addressed, rewritable memory store are well=
known,

In order to re=-interpret the imoroved GOSE as a tree
synthesizer in this way, we need routines to initialize tne
BUFFER witn a target tree (or initial tree), move the cursor
back and forth, and replace a "symbol™ with a "string of
symbols® (whatever these terms mean in the new context),
Alsos we now need to explicitly identify the precise means
used to "display” a tree.

Supposing that appropriate routines are availaole,
we wish to arque that the new mechanism, which Synthesizes
trees, instead of strings, inherits all of the formal pro-
perties of the original, in the following sense.

The dispiay algorithm in use may be thought of as a
function, d, mapping trees into strings. We shall consider
a tree to be a "sentential form"™ of the input grammar of

interest if, and only if, its image is a string which is a
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sentential form of the grammar,

Ne wish to compare the operation of the old ang the
new mechanisms, given exactly the same stream of input sSyme=
bols on the PHASE2 INPUT tape, supposing that the grammar
specifications on the PHASEL INPUT tape are equivalent in
some as yet unspecified sense. The fundamental property
that gives the GDSE all of the features that make it an
appropriate synthesizer for sentential forms is that at each
entry to the loops the BUEFER always contains a correct
form. This property is a consequence of the fact that the
manipulations inside the loop either leave the contents of
the buffer unchanged, or transform one valid form to
another. Since the BUFFER is initialized with a valid form,
by induction the BUFFER never contains anything but a valid
form upon loop entrv.

Ne would like the new mechanism to perform the 3ame
derivation steps, given the same PHASEZ input sequence, as
the old. The display function would then serve as a mor-
phism from the new mechanism to the old, over the operations
aefined by the possible BUFFER transactions made availabie
by the algorithm within its basic loop. Thus, if it is true
that, for any given cycle througnh the loop by the paralle)
mechanisms, with identical forms in the two BUFFERS at tne
beginning of the loop (as viewed under the display function

for the new mechanism), and that corresoonding derivgtions

are undertaken within the 1loop, then for every possSible
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gerivation sequence that can occur under tne old mechanism
there will be one, and only one, derivation sequence which
occurs under the new mechanism, anag the product of the new
mechanism, when viewed under the display function, will ope
identical to that of the old,

The question of paramount interest, is wunder what
circumstances will this property, that the contents of poth
BUFFERs will be display-equivalent for any step in
equivalent machines, be trye?

It is well outside of the scope of our research to
provide a complete answer to this gquestion, in tnhe form of a
set of necessary and sufficient constraints so tnat the
cesired property (which we might call "stepwise

; equivalence”) is true, Rather, we shall provide a dqescrip=

tion in general terms of a3 natural <class of re-

interpretation constraints that are merely sufficient,

In the imoroved GDSE, the PHASEL INPUT tape con=-
tained a finite set of rules, each of which consisted of a
finite set of transformations with one symrrol on the left=
hand side, and a string of symbols on the right=-hand side.
In the re~interpreted synthesizer, each transformation will

consist of a specification calling for the replacement of a

single leaf node, labelled with the symbol on the lefte=hand
side of the original transformation, with a forest of adja-

cent siblings with leaf nodes labelled with each of the sym=

bols on the right=hand side. Such a tree transformation
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specification will be referred to as a template. "Replace=
ment of a symbol by a string"™ 18 now taken to mean the
replacement of a labellied leaf node by the forest of adja=-
cent siblings specified by the aporopriate template,

In order to ensure that the structure in the dUFFER
is always a tree, (since we may allow replacement of a noge
by a forest), it is necessary to ensure that the root node
in the BUFFER is never broken up into a forest. We there~-
fore impose .he constraint on the system tnat the BUFFER be
initialized witn a tree consisting of a sp;cia! root node
with one child, labeled ~ith the target symbol. Since only
Jeaf nodes are ever replaced, no replacement ever turns a
previously internal node into a leaft node (no transforma=
tions have empty right=-hand sides). Since the root node is
initially internal, it is never replaced. Hence tne struc-
ture in the BUFFER is always a bona fide tree.

The above suppositions are insufficient to obtain
the stepwise equivalence property by themseives, since we
have not addressed the display function, which is used to
define what is meant by a tree which is a valig sentential
form,

In the final system to be described, the |anguage
implementer will be given the power both to select a partice-
ular template from all of the valid candidate templates

available, corresponding to the given transformation, and

also influence the display order of the chilaren of a given
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node. The retention of stepwise equivalence depends jointily
on the consistent application of this facility, and 11t 1s
our oresent intention to oprovide a sufficient condition
which does, in fact, preserve it.

Selection of a single template for each transtorma-
tion in the original qrammar may be thought of as specifying
a function, mapping transformations into templates. Let us
name this function f,

In the work immediately following, the display algo-
rithm will be very simple, A tree is displayed py listing
the labels for all of its leaf nodes in order. Since the
right=-hand side of tempiates are ordered forests, we may
also speak consistently of appiying d to the template:
again, we simply list all of the leaf node labels in orger.
ihe required constraint is simply this: ¢ and d must be
inverse functions on the set of transformations in the gram=
mar and selected templates. That is, each template must
display as the transformation to which it corresponds.
Finally, movement of the cursor back ana forth 1is to be
interpreted as movement of the cursor from leaf node to leaf
node, as ordered under the display function,

Under these conditions, stepwise equivalence will be
retained Dby the new mechanism. The fundamental reason for
this is that the display algorithm defined 1s, itself,
“context=free”, It a given tree i8S a sentential form,

application of a template to it will vield a tree which s
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also a sententral form. Moreover, the new tree wiil display
as the same form as that yielded by the corresponding svmbol
replacement aocplied by the string Synthesizer, (ursor move-
ment also takes place in parallel,

Since the new mechanism is stepwiSse equivaient to
the old, it inherits alilt of the forma! properties of tne
old. Of course, since the actual contents of the BUFFER may
be suostantially richer in structure at any given time, the
new mechanism may have emergent properties of 1its own in
addition to those inherited from the GDSE, but such proper-
ties can be utilized only by using an additional algoritnm
to access information that has been hidden in internal nodes
of the tree in the BUFFER.

A more flexible display algorithm will be used in
the finmal gsystem, The implementer will have the power to
permute the display order of the nodes in a template, as
well as to display strings stored with the rule instead of
as labels of a node. The display algorithm retains the
basic property of providing a context=free display, however,
and the same constraint applies to the display and temolate
specifications chosen: each template must, in fact, display
as its corresponding transformation in order for the system

to maintain stepwise equivalence.




2. Strings as Trees,

ne may think of 3 string as a soecial sort of tree
which has a root node ana one child for each sympol in the
string. Such a two-level tree we shall call a string tree,
For instance, the string
*if <expression> then <statement> o(else=part)”
corresponds to the string tree
<root>

it <expression> then <gtatement> o(else-part)

In order to syntnesize string trees with a §D§. we
initialize the BUFFER with the tree
<root>

<target>

Replacement of a sympol by a string of sympols s
redefined as the replacement of a leaf node by a set of
adjacent sioling nodes, fittea into ¢the place of tne
replaced node in the ordered list of leaf nodes. 1In other
words, the template corresponding to a given transformation
is just an ordered forest of single=node trees.

The resulting GDE, although it Qqoes synthesize
trees, constitutes 3 system that is isomorphic to the GLUSE,

3. Parse lrees,
The concept of a parse tree occurs frequently in the

theory of contextefree grammars.
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e can view parse trees as the structures syn=
thesized by another re~interoretation of the basic grammar~
driven synthesizer, The initial tree is taken to be the
same, two node tree as tfor the case ot string trees., Tne
notion of replacement of a symbol ©bvy a string is re=
interpretea as the adgition of children to a leaf node,
labeled with all! the symbols of the string. In other worgs,
templates always take the form of a tree, with the root noage
labeled with the left-nand side of the transformation, and
each chitd labeled with the aporopriate symbol from the
right~hand side. As ysual, the "string” in the BUFFER s
the ordered list of leaf nodes. The resuiting structure is
cansiderably richer than that retained in the BUFFER by the
GDSE, since once a node is created, it is never removed,
{More accurately, if it is8 removed while a leaf node, it is
immediately replaced by a copy of itself.).

4. Comparison of String Trees and Parse Trees.

we take the view that string trees and parse trees
are two special cases of a whole range of trees that can
represent 3 particular sentential form, This observation
can be justified by comparing the properties of the two
types of trees., A string tree incoroorates the minimum
amount of historical information concerning the gerivation
sequence by which it was produced: just enough for further

derivation to correctly proceed. As a result, string trees

are very compact.




Parse trees, on the other hand, incoroporate a very
large amount of information concerning the derivation
sequence by which they were produced: enough So that the
entire sequence can be reconstructed (down to the permuta-
tion of commutative non-terminal selection). As a result,
parse trees are very large. AS a concrete example, Figure 1
in Appendix H contains both the parse tree for a trivial
PASCAL program.

Our eventual goal is to provide for grammar=driven
synthesis of directly evaluable trees of reasonable size. A
secondary goal is to do this in such a way that the resulte
ing tree can be displayed as a proqram in the language in
which it was created, but can be evaluated without any aadi-
tional syntactical access.

Neither string trees nor parse trees are syitable
constructs for achieving these goals. String trees incor-
porated no structural information and must be reparsed 1in
order to access their semantic contents in the correct
order, (This process may even he impossible if the string
tree was sSynthesized under an ambiguous grammar.) Too much
information nas been discarded at the time of synthesis,

On the other hand, parse trees are unreasonably
large. Most of the nodes record syntactical information

that is semantically content=free.
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Qur task, therefore, is to find a8 way to reach some
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miagdle ground, Synthesizing trees which contain enough nodes ’
to retain the desired control structure, but allowing the
elimination of nodes which have no semantic content.
The purpose of the present section is not to provige

a complete description of how this is to be agone, but to

h ‘.‘.A — s

provide a conceptual range of intermediate possibilities.
It will then be possible to choose the sort of tree to be I
synthesized to meet a particular requirement intelligentliy. *
In short, we wish to introduce some “engineering slack™ into ﬂ
the formal system.

This purpose is realized by introducing the notion
of derivation trees; a general concept of which both parse

and string trees are a special case,

S. Derivation Trees,. |
One way to characterize the structure of a parse
tree is to note that every parent node in the tree derives
its children in exactly one step. Thus, the relation
between parents and children in the tree is the same as the
“=>" prelationship.
He consider the set of trees in which each parent
derives its children in zero or more steps; that is, incor-
porates the "#=>" relationshio.
Such trees may be constructed from a parse tree 1in
the following manner:

a. Mark the root and leaf nodes.
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b. Mark zero or more of the remaining nodes.

C. Discara each unmarkea node. Every time a
node ts discardea, replace 1t within the
set of its siblings by all of its children,
taken now as adjacent siblings. (lhis
procedure preserves the relative ancestry

of all undiscarded nodes,).

node derives 1its new children in zero or more steps.

can be seen py noting that the hypothesis is true for

original parse tree, and that if true for a discaraed noge

and 1ts children, is true for the node's parents ang

children during each application of the third step. Hence,

it is true for the resulting tree,

In the procedure just specified, the selection

interior nodes to be retainead is done non-deterministically,

It is the specification of the particular agorithm to

used for selecting nodes for retention that we make avail-
able to the system implementer as an engineering choice.
The two simplest algorithms are to retain all interior
nodes, in which case parse trees are produyced, or to discard
all interior nodes, in which case string trees are produced.

The trees produced by the procedure just described

we call generalized gerivation trees. 0Our goal, however,

not to produce a full parse tree and only then to prune
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The above procedure assures that every remaining




but to synthesize a3 pruned derivation tree directly as we go
along.

This desire suggests that we apply a particular syne
thesis wuniformally, in the sense that for each transforma-=
tion implicit in the R-ARGOT grammar there be associated
one, and only one, synthesis action. This suggestion is not
quite a necessary implication: one could conceive of some
history or context-dependent algorithm for selecting one of
several oredefined synthesis actions associated with a
transformation, In fact, such "intelligent™ systems are an
interesting subject for future research.

But if the simpler protocol is adopted, we ootain a
sub<class of derivation trees, which we call derivation
trees constructed by rule, Both oparse trees and string
trees are also members of this class. Hereafter, the term
"derivation tree" will Dbpe ungerstood in this restricted
sense.

The association of one, and only one template, with
each transformation 118 very clearly an emboadiment of thig
idea. The GDE previously described is thus a mechanism
capable of synthesizing any class of uniform derivation
trees desirea for a given grammar in R=ARGOQT,

In essence, the next chapter represents the selec-
tion of further constraints on the template formats to be
associated with each type of transformation, in such a way

that our design goals are acheivea. The trees produced
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under the set of orotocols are a particular sort of deriva-
tion tree constructed by rule, which we shali call hereafter
abstract syntax trees., JThis name is aadopted from the ideas
contained in [McKeenan 197V) as representing an intermediate
stage in the translation of some program in which a parse
tree has had its syntax-adependent, semantically void inte-
rior nodes pruned awav.

o. Elimination of Terminal Strings in Derivation lrees.

An inspection of parse trees such as the one
displayed in Figure 1 suggests three general classes of
nodes for elimination: those representing a series of pro=
duction steps needed to fill a high~level slot with a low=
level construct (so-called "empty productions®); those
encoding options available but not 8o far taken (e=symools);
and those representing keywords and punctuation,

As the next chapter shows, selection of appropriate
template protocols allows removal of nodes representing
empty productions. It is our bpeliet that nodes of the
second type can also be eliminated by appropriate tempiate
selection and context=sensitive computation to compute the
existence of a "virtual®™ option,

We now investigate a methodology tor eliminating
most nodes required to hold terminal strings,

Ne first make the observation that most such nodes
are semantically content=free, An examination of the K=

ARGOT notation will show that terminal symbols can only be
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adaed to a synthesis in one of two ways: by means ot a con-
catenation or list=iteration transformation, or by means of
a oregefinea (autoparsed) rule name expansion. In tne
second case, the included string may well be meaningful,
e.g. if it is an identifier or the like., In the former
case, however, since the required terminal string cannot be
an optional tield, there 1is no choice as to whether tne
string can or cannot be included., If such a choice existed,
it must have Dbeen via an earlier option or alternative
seiection, and by the template protocols specified in tne
next chapter, this selection i3 already encodeg into the
structure of the tree. There is thus no reason to ada a
node to the tree simply to represent an invariant field,

On the other hand, in order to be usable we must be
able to display the string as if it were a node in the tree,
The solution to this quandary isS to make provision for com=
puting the location and contents of such virtual fields when
the need arises., This can be done, provided that 1list and
concatenation erule templates always have a single head nodge
which can be associated with the specific rule from which
they were derived in some wavy (efther by inserting a reter-
ence to the rule into the node, or computing the rule trom
context), If the contents of the virtual fields associated
with the rule are then stored with the rule, we can avoild

repeating these strings throughout the derivation tree,
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These ideas are more concretely discussead in the

protocols for template construction in the next chapter,

F. COMPARISUN OF GRAMMAR=-UTILIZATION TECHNOLOGIES

It is approoriate at this point to step back and place
the system of grammar utilization described in this cnapter
within the range of currently available technologies for
grammar utilization. We shall compare this system with the
two common parsing techniques: bottom=up and top=down pars-
ing. All three of these techniques may be thougnt ot as
producing as output derivation trees,

It should be recognized that the tree produced by a
parser in contemporary translation systems is usually "vir~
tual®™, The parser emits a series of syntax=directed action
commands which may be thought of as the sequential represen=
tation of a post-order traversal of a derivation tree. The
"back end” of the system may be thought of as traversing
behind the parser, destroving nodes as Quickly as tney are
built,.

Both of the parsing techniques are designed to proceed
automatically, that is, without any human intervention. The
grammar=driven synthesizer, in comparison, 18 inherently
interactive, This property 1is both an aavantage and a
disadvantage, in that the synthesizer wutilizes interaction
to attain desirable goals, but cannot be impiemented without

interactive devices being avgilhole.
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I{he neea for the parser=oriented techniques to proceed
automatically olaces a set of mathematical constraints on
the grammars usaole by such systems, The grammar=driven
synthesizer is capable of utilizing almost any context=-tree
grammar: a cgoabi)ity that allows the langu;ge aesigner toO
optimize the grammar selegted tor realizing some orogramming
lgnguage towards a set of semantic;l\y ngtural rules which
will be easy tor tne human user to understand.

The parser-pasead systems are essentially decoders,
translating a valid word in the defined language into a more
complicated, but equivalent, structure, inherent in this
process is the requirement for the user to use some other
system, such as a keypunch or text editor, to tformulate a
valiag inout word in sequential form: a notoriously error-
prone and tedious process. In contrast, the grammar=driven
synthesizer 2allows the wuser to c¢reate the desired tree
structure directly and with no possibility ot syntactic
error (since such errors are simpiy rejected immediately).

Finally, we note that both parsing techniques synthesize
the output tree from the bottom up. The grammar~driven syn=
thesizer follows a true top=down synthesis: thus, the
partially=complete structure 1is completely well=structured
so far as it goes, The system is for this reason well~-
suited as a base for dealing with partially complete pro-~

grams,




B et et

ITI. CONCEPTUAL DESIGN FOR GDE

A, INTROOUCTION

In this chaoter a conceptual! design for a Grammar
Directed Editor is develooed within the framework gefineg in
Chaoter IT.

The mathematica) mode) proviades a large framework in
which to design a Grammar Nirected Editor, subject to the
foilowing restrictions:

1. Grammar ryles are limited to the <concatenation,
alternation, iteration, list, predefined, and undefined
rules in the forms specified by the R=ARGOT notation,

2. The templates associated with these grammar rules
may consist of arbitrary forests of siblings, the leaves of
which must be labelled in accordance with the transforma-~
tions summarized in Figure 2.

3. The templates for list and concatenation rules which
include terminal symbols must create head nodes which retain
or refer to those termina) symbols for display.

A Grammar Directed Editor constructed in accordance
with these restrictions will produce a derivation tree whose
leaves and terminal symbols, retained in heaad nodes, are
disolayable as a valid derivation of the input aqrammar,

The following design restrictions and goals serve as a

basfs for 1limiting the very general nature of the possible
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templates to a set of generic templates which define the
permissible transformations available for the construction
of an Abstract Syntax Tree (AST):

1. The AST should contain the minimum number nf nodes
consistent with the retention of all necessary semantic and
schematic information.

2. The structure of the AST should admit efficient
editing algorithms, in particular for append, delete, and
insert functions.,

3. The AST should not only be an evaluable structure,
but further it should reguire no "preprocessing” between
editing and evaluation operations,

4, The generic transformation template structure should
be such that the creation of specific templates for a given
grammar can be automated over the simplest possible inout
data, perhaps as simple as a grammar in a suitable nmotation,

The methodoloagy employed in the gdesign process rdescribed
in the following section 1is to apply, working within the
constraints which the mathematical model suqgests, such
further constraints and definitions as may be necessary to
develop generic templates for each transformation which
realize the design goals. In section C, a method for
displaying the AST is developed which is consistent with the
generic templates as well as with the requirement that the
valid derjvation which the AST represents ve displayable as

such., Section D introduces the notion of a Language




Definition, wherein an R=ARGOT grammar is translated into an

ordered collection of transformation templates and display
schemas which serves as the basis for the <construction and

qisolay of an AST.

B. TRANSFORMATIONS

i. Ocerators and Rulenames

Figure 2 is the result of precisely defining the
leaves oproduced by each of the transformations defined in

Chaoter 11,

A simple change in notation oroduces Figure 3,
wherein every rulename 1in a transformation is associated
with an ooerator to form a two=part label, as follows:

<r> = NT,r

copt(r) = LOPT,r

iopt(r) = [0OPT,r
lopt(r) = LOPT,r
pdf(p) = PDF(p),so

where ¢ is any grammar rulename and p s any predefined

ruliename, The first part of a label, the operator, wil)

T

guide future transformations. The second part, the

rulename, serves as a reference to that section of the

l1anguage~specific data base containing the information
required for operforming transformations or display. In
other words, labels may be thought of as a selfemodifying

"orogram® for the Grammar Directed Editor stored in the




hierarchical AST structure by previous versions of the pro-
gram, encoding all of the information necessary foar supse-
quent modifications or display of the structure.

Note that as a result of the notational convention
adooted here that the set of possible labels is finite over
a finite set of grammar rules and, therefore, the set of
templates required for SsSuch a grammar 1S also finite.
Further, the tyoe of transformation which may be appiied to
a given node is determined entirely by the operator and rule
type association stored within that node,

The alternation and predefined transformations
present a problem, however: althouan the "NT" opcode is
ysually stored in transient nodes, these two oparticular
transformaticons must be stored in free nodes. The alterna~
tion reauires that the user select one of the possible
alternatives, and the predefined functions reguire that the
user input a string which they then process. This irregu=~
larity is resolved by the introduction of two new operators
ALT and TERM and the following pairs of transformations:

NT,a => ALT,a
ALT,a => { NT,rl } +oo V NTyorn }

NT,o s> TERM,p

1]
v

TERM,p PDF(D):D
The operators "ALT™ and "TERM" may be thought of as Jlogi-
cally equivalent ¢to "NT", but as expnlicitly labelling (for

display ourposes) the nodes as free (for synthesis
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purooses), Figqure 4 reflects these modifications to tne
general trangsformation table,

The introduction of the two new labels ALT,a and
TERM,p, while not altering the leaves produced by the origi=
nal transformations and thus not violating the valigity of
the mathematical model's results to systems based on this
extension, orovide the following benefits:

a. The format for tne five defined types of tem=
plate sets s more regular., At least two transformations
are associated with each rule type, The first of these
transformations is, in every case, a required transforma-
tion., The second and following transformations require some
form of interaction with the user,

o. Every node whose label has an "NT" operator may
be automatically exoanded during the autoscan process.
Thus, after autoscan, the only leaves whose labels contain
the “NT® operator will be those corresponding to undefined
rules.

c. Since for every uniaue label there is one and
only one transformation opossible, no contextual information
need be extracted from the AST in order to select and per~
form the correct trangformation., This simplifies the tasks
both of language implementation as well as AST formation
since production and invokation of a transformation tempiate

is independent of any AST contextual considecrations.
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2. Transformation Restrictions

The transformations as discussed so far define only
the leaves of a possible forest of siblings which are to
replace a particular node of the AST, Wie now turn our
attention to designing the interior structure, if any, of
the forests generated by the transformation templates, In
the absence of other design goals or restrictions, the drive
ing motivation in determining the forest structure is to
obtain as much simplicity and economy of space as possible.
These goals must be balanced with the necessity to retain
semantic or schematic information to preserve the valid
derivation oroperty, as well as to retain sufficient struce
tural information so that insertion and deletion editing
functions may be convenient for the user as well as effie
cient algorithmically. The requirement to be able to delete
synthesized subtrees turns out to constrain the template
structures such that the other goals are also met,

In order to recover gracefully from erronecusly con=
structed portions of the AST, the user should have the caoca=~
tility to delete any node in the AST, which, as for any
hierarchical structure, inevitably involves the ability to
delete any subtree, The valid derivation oroperty of the
AST requires that deletion of a subtree from an AST be real-
ized as the replacement of the entire subtree by a node
which can validly derive that subtree and which also forms a

valfd derfvation with the remainder of the AST, The choice
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of the transformation to be applied to a node in the AST is
based solely on the information contained in the node itself
and is completely independent of the node's context. There-~
fore, deletion of a subtree must be equivalent to replace-
ment of that subtree by a node witn the same label, that is,
the same operator and rulename, which the node which was
expanded to form the deleted subtree contained when the node
was originally created. The constraints orovided by the
abstract model! of Chapter II are not sufficient to guarantee
that this can be consistently and efficiently accomplished.
For example, consider a grammar which has only concatenation
rules, each of which is entirely either nonterminal sympols
or terminal symbols. Since the model allows the definition
of templates for concatenation rules which have no terminal
symbols without a head node, the tree derived from such a
grammar could be a string tree, containing no information
for reconstructing a node being considered for deletion.
The only action possible for a deletion algorithm in this
case would be to delete the entire tree, However, consider
the effect of the following proposed restrictions:

a. All immediate children of a (necessarily oound)
node must be created by the transformations of the rule ov
which their father was bound.

b. When a node is bound, the rule whose transforma-

tion bound the node is permanentliy recorded in the node,
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€. A given transformation may generate two Or more
chilgless siblinas, or a subtree of the current node, but
not both,

de If a subtree is created by a transformation, it
is limited to at most a single generation of children and
may consist of a single node,

Given these restrictions, the rule (and therefore,
at worst, a choice between two transformation templates)
which originally created any given node in the AST car be
identified by examining its father. Computation on the
father rule templates allows retrieval of the wunique node
from which the subtree to be deleted was formed. This
uniqueness is further discussed below.

3. 1Iranstormation Templates

Given the restrictions developed in the previous
section, we are prepared to define the forests orodguced DOV
each of the eleven transformations., The notation utilized
in the transformation templates below is defined in Appendix
C.

a. Concatenation
Rule:

€ ¢ x1 %2 cee XN ’ xk = { prk ! "["rk™1" | otk )
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Template:
headop,c ( # ( NT,rk it xk = rk
! COPT,rk if xk = “["rk"]" }

"e® .o ) if for some k.

NT,c => xk = { rk § "{"rk"1" )}
headop,cC . it for all x, xk in T

neadop = { HEAD | poredefined function }

There are six cases to be considered in the

transformation to be applied to the Jabel NT,c:

nonterminals terminals comment
Case 1: 0 NO undefined rule
Case 2: 1 NO useless production
Case 3: >1 NO head required by delete
% Case 4: 0 YES terminals only
é Case 5: ! YES head reauired oy model
% Case 6: >1 YES nhead required by model

Case | corresponds to the undefined rule wherein
no righthand side of the rule exists., The undefined rule
transformation is discussed below.

In cases 3, S, and 6 it is required that a head
node be created, in cases S5 and 6 by the mathematical mode)
for the retention of terminal information and in all cases

by the restrictions defined for the deletion alaorithms. In

each case the head node replaces the nonterminal under

transformation and the nonterminal and/or optional chilaren




are realized as the immediate children of the head node.

In case 4 a3 head node retaining the terminal
information reolaces the nonterminal being transformed,
Since there are no nonterminals in the grammar rule for
which this form of this transformation is utilized, no chil=-
dren are created. Note that this node is bound since it s
transformed into a node which is not one of the label forms
for which transformations are definea; in fact, this is the
only bound leaf node form generated outside the realm of
predetined functions,

Case 2 is the wuseless production. ne could,
without violating any of the restrictions thus far imposed,
adaefine this case of this transformation as a single node
replacement, i.e., as NT,c => NT,r, thus avoiding the crea-
tion of a head node carrying no information, However, we
see the useless oproduction as a vervy rare and usually
unnecessary occurrence which does not justify the increased
algorithmic complexity required for its detection. There-~
fore, it is treated in the same manner as cases 3, S, and 6.
Implicit Template:

COPT,r => NT,r

This Yabel must be accompanied by some form of
user attention in order that the transformation be invoked,

the nature of which 1is discussed in the next section.

Assuming for the moment that the user has eolected to take

}
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the transformation applied is a single node

the ootion,

replacement wherein the operator COPT is overwritten with

NY, and the rulename remains unchanqged.

Note that the rulename in the COPT label may ove

any of the six rule types, including undefined, which raises

of where to store the template for this

the question

transformation. The solution is to make this transformation

implicit, that is, to apply the transformation without an

explicit template being stored in the grammatical data base,

P

This may be done since the transformation 18 invariant over

all rules imn any grammar, depending only on the reguisite

user attention and the COPT operator.

be Alternation

a "

Template 1:

NT,a => ALT,a

The transformation for the labe)l NT,a is a sine !

is repltaced with ALT,

the operator NT

gle node replacement’

and the rulename remains unchanged.

Template 2
NT,rk it user input valid

ALT,a =>

ALT,a otherwise

This label must be accompanied by user input

indicating which of the alternatives is desired; suppose for

the moment it is the kth, The transformation aoplied is8 a




single node replacement wherein the operator ALT becomes NT
and the alternation rulename is overwritten with the
rulename of the kth alternative, [f the user input does not
correspond to any of the alternatives, the transformation
returns the node unchanged,
c. lteration

Rule:

i " op
Template 13

NT, i => ITERyi ( NT,r ;3 I0PT,i )

while not required by the mathematical model, a
head node is created by the transformation for the labe)
NT,i to fulfill the deletion requirements, The two leaves
specified by the model are formed as the immediate children
of the head node in which the ooerator NT was replaced by
ITER, A side effect of the invariant creation of a head
node is that, while inconsistent with the model, terminal
information apolicable to every real child in the iteration
sibling string, as opposed to the trailing IOPT child, could
be included in the iteration rule if an appropriate exten~
sion were made to the R=ARGOT notation.

Temolate 2:

IOPToi > NT,P H IOPT'§

Triggered by the appropriate user input, the

transformétioa for the labe! I0PT,i replaces the node with a
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pair of sinlings which are the leaves required by the mogei,
Note that the rulename in the [OPT lapel i3 the same
rulename which bound its father, Thus, all children of the
ITER node, whether formed when the ITER node was bound or
subsequently when the IOPT node was expanded, are formed by
one of the transformations under the rulename stored in the
ITER node, as required.
de. List
Rule:

Vo3 "#" Prl x "o0e” ’ x

{r2 § "("e2"1" | t )

Template 1:

NT,1 s> LIST,1 ( NT,rl ; LOPT,1 )

The transformation for the labe! NT,1 replaces
the operator NT with the operator LIST, forming a head node
as required by the model! in the case the second right~=hand=-
side argument of the grammar rule i3 a nonterminal and in
every case by the deletion requirements. The required
leaves form a sibling string under the LIST node.

Template 2:

NT,r2 7 NT,rl ; LOPT,i if x = pr2
LOPT,? => COPT,r2 7 NT,rl ; LN™T, Pif ox = "[("p2")"
NT,r1 ; LOPT,! it x = ¢t

The transformation for this label has three
forms, as indicated, for the three possible cases. In al)}

cases, the LOPT node being transformed is replaced with a
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sibling string as shown, the nodes of whicn are the required
leaves, As in the IOPT transformation, the LOPT label car=
ries the same rulename as its father so that all children
created under a LIST head node are derived from a common
parent rule,
e. Predefined

Rule:

p : pdf
Temolate 1:

NT,o s> TERM,po

The transformation for the label NT,p is a sin-
gle node replacement, the NT operator being overwritten with
TERM and the rulename remaining unchanged.

Temolate 2:
POF(psstring),p if PDF(p,string) valid
TERM,p =>

TERM,p otherwise

The label TERM,p must be accompanted by
appropriate user input before the transformation is aoplied.
The exact nature of the transformation applied is dependent
uoon the predefined rulename, but certain characteristics of
the transformation may be generalijzed. The transformation
regsults in either a single node repliacement or a possibly
many=-teveled subtree; it may not qenerate siblinas or a

forest of gsgiblings. As regards the deletion restrictions,
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the subtree created by a predefined function is considered a
single wunit for editing purposes that is not suDject to
internal deletions or insertions, System provided prede-
fined rules, if the inout is valid, invariably result in a
bound node or subtree of bound nodes; a free node in the
subtree would imply knowledge of language=specific grammar
rules which no general puroose predefined function could
have. User=supplied bpredefined functions, allowaole as a
language~specific extension to the system, may admit such
free nodes; however, the language implementor is responsible
for ensuring the syntactic integrity of the AST is preserved
over such transformations,

If the input accompanying the label is rejected
by the predefined function, the transformation is null and
the node is unchanged.

f. Undefined
Implicit Template:

NT,u => NY,u

The undefined label undergoes a null, implicit
transformation,

4, User Attention

Of the eleven transformations, six define the action
to be taken for the six possible nonterminal labels, The
remaining five, the second transformation template for each

of the five defined rule tyoes, all require some form of
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user attention orior to the apolication of the specified

template, The form of user attention requirea is dependent

upon the operator but generally may be characterized as con=
gsisting of two parts: an indication that the user wishes to
direct attention to the current node, and a possibly emoty
character String utilized by the transformation as an inout

parameter, The five transformations requiring user atten=

tion fall into three classes, as follows: -
a. IOPT, CGOPT, LOPT -

The three optional operators require simply that

the wuser elect to expmand the optional node. Thus directing
attention to an optional node is sufficient for application
of the template and the tharacter string parameter is not

required,

b. ALT

The Alternation operator requires that the user,
after directing attention to the alternation node, orovide a
character to be utilized in determining which of the possi-

ble alternatives is desired,

c. TERM

The TERM operator requires, in addition to the

user's attention, a character string for processing by the

predefined rule associated with the node,
The exact format of the user attention parameter
is {implementation dependent, but is summarized abstractly as

follows, by operator:
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ooerator user attention

COPT <elect option>
10PY <elect option>
LOPT <elect option>
ALT <char>

TERM <string>

5. Deletion and Insertion

Earlier it was asserted that templates defined in
accordance with an appropriate set of restrictions would
allow deletion of any subtree from the AST ysing only the
rulename of the subtree's parent node, WNe now verify that
assertion based on the templates as defined above,

Of the six rule types, three may bDe excluded from
consideration as ootential parents of nodes to be deleted.
Undetined rules never form cnildren and thus are never
referenced for deletion. Pregdefineo rules are defined to
create subtrees which can be edited only as complete units,
Alternation rulenames never appear in bound nodes of the AST
since the alternation rulename in a free node i8S overwritten
with the rulename of the alternative rule chosen, Thus only
concatenation, iteration, and list rules remain as ootential
parents of subtrees whose deletion is desired. The parent's
rule type in each of these three cases may be positively
identified by the parent node's operator: if the operator is

ITER, the the parent rule is an iteration; it LIST, then it

is a list ryle; and {f otherwise (either HEAD or 3




predefined function), then the parent rule is a concatenae
tion, The templates for these three rule types allow
recreation of the original label which existed when the root
node of the subtree to be deieted was initially created,

A parent concatenation rule, upon itnitial expansion,
creates a fixed number of children, all of the forms NT,r
and COPT,r, By inspection, no transformation or sequence of
transformations on these labels for anv of the six rule
tvypes may create additional siblings under the parent con-
catenation rule nor may they recgrder the subtrees initially
created. Thus the initial fixed number ard order of chile
dren created remains constant. Suppose some subtree, say
the ith, under the concatenation rule parent is selected for
deletion. The sibling which was originally created by thne
concatenation rule as its ith child may be reconstructed by
traversing the concatenation rule temoplate until the ith
sibling list element is encountered. This sibling list ele~
ment contains the information by which the node reolacing
the subtree to be deleted may have its operator and rulename
fields reinitialized, Deletion of a subtree under an itera-
tion ru parent node is made possible by the consistent
manner in which the two iteration rule templates create
children of the parent node. The first child is created by
the first template and the deletion process for the first
suDtree is similar to concatenation deletion. Subsequent

subtrees, up to the trailing IOPT,i mode, are created by the
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second template and the information necessary to recreate
any )abhe)l may be retrieved from the first sibling list ele~
ment of that template, The [OPT,i child is invariant in
location and form and is not subject to deletion,

Deletion of the firsf subtree under a list rule
parent 8 handled in the same manner as the first subtree
under an iteration oarent. Subsequent subtrees, up to the
LOPT,! node, are also similar to iteration rule suoDtrees
except that they may have been created in pairs. Examina~
tion of the list rule's second template will reveal whether
subtrees after the first must be treated in pairs or mav be
handled singly, In either event, the information necessary
to recreate any given child is available in the template,
The LOPT,) child is not subject to deletion.

So far deletion has been concerned oanly with
"unparsing™ an incorrectly formea subtree to a single ances-
tor node so that the subtree may be correctly reconstructed,
For subtrees of concatenation rules this is the only form of
deletion which retains the valid derivation property. Sub~=
trees of iteration rules, however, are all)l derived from the
same label and thus are 3ll syntactically equivalent when
viewed ¢trom their root. Further, the only restriction on
the number of iteration rule node subtrees s that there
must be at least one in addition to the IOPT node. Thus,

deletion of an iteration rule subtree, excepting throughout

the ¢trailing IOPT node, could be realized as the actual




physical deletion of the entire subtree including the root
node, as lonqg as at least one subtree remains., As a corol-
lary, a node oroperly labelled in accordance with the i1tera-
tion parent rule could be inserted in front of any node in
the iteration sibling string without violating the wvalid
derivation property. The insertion procedure requires the
same information as deletion, the rule tyoe and ruiename of
the parent node, in order to construct an aporopriately
labelled node for insertion into an existing iteration node
sibling string.

List rulés whose second argument is a terminal sym-
bol form AST structures equivalent to iteration constructs
and thus ohysical deletion (as opposed to unparsing to a
single node) as well as insertion are valid operations,
List rules in general present a more complicated oroblem in
that subtrees after the first are formed in pairs. However,
extending the argument concerning syntactic equivalence of
subtrees to pairs of subtrees is straightforward and allows
physical deletion and insertion to apply to list rule sub=
trees as well,

In summary, deletion is realized as a replacement
operation for all concatenation rule subtrees and for soli-
tary iteration and list rule subtrees, wherein the subtrems
to be deleted is replaced by a single node which is a recon=
struction of the subtree's initial state. Under iteration

and list parents where other subtrees exist, deletion
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results in the physical removal of the subtree or subtree
pair; reconstruction may be accomplished at the same nr some
other location under the parent by a separate insertion

operation.

C. DISPLAY SCHEMAS

Thus far a method of constructing an AST has been
developed wutilizing transformations to expand nodes in
accordance with a set of templates sorted by rulename such
that the AST reoresents a valid derivation of the associated
grammar, Attention is now focused on displaying the AST; in
particular, a method is developed in this section Dy which
the valid derivation of the grammar which the AST represents
may be displayed.

Oisplay of the AST is the result of a generalized
inorder traversal, beginning with the root node, with termi=
nal and nonterminal symbols being displaved 1in accordance
with schemas associated with each label, The display need
not be strictly preorder since provision is made to disptlay
subtrees under a8 parent node in any order as directed by the
parent's rule schema. This capability is provided to allow
for the case where the evaluator may have to access the sub=~
trees in 3 different order than that implied by the syntax
of the target language.

Schemas are referenced by the rulename associated with

each bound and free node in a manner Ssimilar to the
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referencing of templates so that the display associated with
a subtree is independent of the context of that subtree,

The valid derivation need not be disolayea 1in its
entirety, For examole, the means is provided to display all
undefined nonterminals as they occur in the AST as part of
the valid derivation. If the language implementor chooses,
however, he may elect to not display any of the wundefined
nonterminals which appear in a partial grammar he is imple~
menting in its incomplete state.

In the following two sections, first the schema language
is defined and then the formation of schemas for each of the
ruletypes is developed.

1. Schema Language

There are three types of display information pro-
vided for in the schema lanquage: format control, literal
strings, and subtree indicators. A system for handling come
ments has not yet been developed. However, it is envisioned
as an extension to the schema language and not as part of
the grammar for the target language.

Format control information is encooged mneumonically
in the double capital-letter strings "NL", "TB", and "UT",
interpreted respectively as "newline”, "tab"™, and "untab”,
UT simply causes a variable, "tabcount”™, to be decrementeqd.
T8 causes a tab contro) character to be transmitted to the
output device and increments "taocount”, NL causes a new~

line character and "tabcount” tabs to be transmitted to the
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output device. Format control information is provided for
readability only.

Literal strings are arpitrary character strings,
delimited by double quotes, that are transmitted directly to
the output device. Literal strings provide the mechanism

for the display of terminal and nonterminal symbols in the

derivation represented by the AST,

A sybtree indicator, denoted by a dollar sign fol=

lowed by an integer interpreted as a child number, directs
that that subtree be entirely displayed prior to resumption
of display of the current schema, An optional display
field, consisting of an eauals sian followed by a tliteral

string, may accompany the subtree indicator to provide the

means for displaying undefined nonterminals, the three
optionals, and TERM nodes, as described in the following q
paragraphs, i

An undefined nonterminal may apoear for a variety of
reasons, the most common being as a placeholder in a partial
grammar, Since the rule for the nonterminal does not exist,
there can be no schema, so the optional field, if orovided,
is invariably utilized. 1If not provided, nothing will be
displayed for the undefined nonterminal,.

The three optional nodes, COPT, 10PT, ana LOPT,

require spectal! handling since there is nothing inherently

"optional” about a ryle. Rather, t.e optional nodes are

placeholders to indicate to the user the possibility that




the rule specified may be invoked, if the user so chooses,
but also may be left uninvoked in a "complete” AST., Since
it is the father rule which holds the information that this
rule invocation may be an as vet unelected option, the
father rule schem, contains the information, in the form of
an optional display field, to display the noae accordingly.

The predefined rule referenced by a TERM node is in
general a language=independent system routine. As such, it
has no knowledge of the nonterminal name which 1it, when
invoked by the yser on a string, is replacing in the valid
derivation, Since the father ryle does have this informae
tion, the father rule schema contains the optional display
field necessary to properly display, within the context of
the grammar, the rulename which the predefined rule will
replace., In other words, this facility allows the |anguage
implementor to rename the predefined rule for disolay pur-
pnses,

nhen an option has been elected or a TERM node
predefined rule has produced a bound node, both of which are
displayable in their own right, the optionmal field associ=
ated with the subtree indicator is no longer necessary and
will be ignored by the display algorithm. While these nodes
remain free, however, the optional disolay field provides
the user the {nformation he needs to expand these nodes, as

well as a logical symbol under which the GDE may place the

cursor to indicate the current node.
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A subtree indicator which may reference one of the
three node tyoes discussed above must, in order that a valid
derivation he disolayed, 1include an appropriate optional
aisplay field, The imolementor may, of course, omit such a
display field in which case nothing will! be displiaved for
the node. In the case of an undefined nonterm®nal this may
be the most pleasing result; in the case of optionals and
TERM nodes such a display will not accurately reflect all
free nodes in the AST that may be of interest to the user,
The ommission of such an ootional! display field may be
regarded undeer normal circumstances as a mistake in the
language definition.

2e Rule=Specific Schemas

Construction of schemas is a straight=forward pro-
cess when keved to rule=type since the schema subtree indi-
cators and literal strings must conform to both the R=-ARGQT
qQrammar rule definition and to the transformation templates
associated with the rule definition in a conrsistent way. In
the schems constructions which follow, format control infor-
mation is ignored, but generally may be inserted into a
schema any place that a terminal symbol is allowed.

a. Concatenation
Rule:

c ¢ xl %2 ocee XN ’ xk = ( Pk} "["rk™)"™ | tik )
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Schema:

cs 2 sl s2 .00 SN

"tk” if xk = tx
$i="lrulenamel” if child j is optional

sk = $j="<rulename>" it chila j} is predefined
$iz"(rulename)” if chilg j is undefined
$;j otherwise

A single schema is required for the concatena-
tion rule and may be constructed, if all nonterminals are
realized as children in the order they are listed in the R=-
ARGOT rule, as follows:

Reading the R=ARGOT concatenation rule from left to
right, for each symbol xk:
if xk is a terminal symbol, copy it to
the schema as a literal string;
if xk is the jth nonterminal and is optional,
write $j="(rulenamel” to the schema;
if xk is the jth nonterminal and is predefined,
write $j="<rulename>” to the schema;’
if xk is the jth nonterminal and is undefined.,
write 8j="(rulename)” to the schema.
it xk is the jth nonterminal symbol, and is
not optional, undefined, or a predefined

rule, write $j to the schema;
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This alaqorithm for the construction of a cone
catenation schema is for the displav of the entire valid
derivation, If display of an undefined nonterminal, for
example, is not desired, the subtree ingicator for that
child could either be written without the optional display
field or be omitted entirely, while this algorithm assumes
that the implementor wrote the concatenation template such
that the children correspond in order to tne naonterminals in
the rule, this need not be the case., The schema must «know
the order, however, S0 that the display is an accurate
representation of the derivation obtained from the grammar,

As an example of each of the opossibilities
listed above, consider the concatenation rule

simole : "program” name decls [externs] block "ena" .
where the nonterminal! "name” retfers to a oredefined func-
tion, "decls”™ is an undefined nonterminal, and "block” is a
wel)l defined, non=-optional, non-predefined nonterminal, The
schema for this rule, without any format control characters,
wouyld be

“program™$l="<name>"523"(declis)"33="(externs] "34"engd"
bs Alternation
Rule:
a ! "{" charl:xt "}"™ char2:x2 "!" ..o "!" charntxn "}"
Schemas:
asl ¢ "{alternation rulename}”

as2 ¢ "{ chartirulenamel! } ... ! charnirulenamen )"
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Since the transformations defined for an alter=
nation rule are both single node replacements, the second
one of which results in the altermnation rulename being
overwritten, it s clear that no semantic or schematic
information required in a sentence in the languaqe, as
opposed to a valid derivation in general, may be associated
with the schema for an alternation rule since once the
alternative choice is made by the user, the rulename and
thus access to the schema is no longer present in the AST,
Thus the schema for an alternation rule could have been
implemented as a s3subtree indicator optional field. we
choose to provide a pair of explicit display schemas associ-
ated with the alternation rulename, however, to implement a
"help” mechanism. The first display schema consists simply
of a literal string composed of the alternation rulename in
curly brackets and is the schema normaliy used to display
the node. The second, optional at user request, i3 again
simply a literal string but with the alternative rules and
their associated kevstrokes displayed in curly hrackets,

For example, the following alternation rule

statement : { atassignment | ciconditional ! biblock }
would be displayed normally by the schema

"{ statement }"
or, if the user desired to see the alternatives and their
keystrokes, by

*"{ azassignment | ciconditional | bitblock )"




¢c. Iteration
Rule: !i
i3

s op !

Schemas:

isl ¢ §1

is2 ¢ "(iteration rulename}”

The iteration (as well as the list) rules differ
from concatenation in that they may have an indefinite
number of children requiring display. Since no terminals
are allowed in an R<ARGOT iteration rule and since every
child is formed independently of the others in the sibling
strina, display of an iteration, while involving some work
on the oart of the display algorithm to traverse all of the

subtrees one at a time, requires 3 pair of very simple sche-

mas. The first is simply a subtree indicator used for
display of all subtrees except the last., The subtree indica-

tor may include an optional field for undefined and orede=

fined rule displav: from the transformation template defini= h
tions it is apparent that no child of an iteration node can {
be a concatenation optional node. The second schema is used ’
for disolay of the last child, invariably an IUPT node. |

de. List

pa=—r——

Rule:

T ¢ "#% rl x ".00" ’ x = { r2 1 "("r2"1" } v}
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Schemas:

s} : $1
$182 if x = r2

1s2 : $1="({rulename2) "32 if x

L] [“raﬂ] L}

"t"s1 if x

(1]
~

is3

“{1ist rulenamel™

The list rule requires three schemas in order to
properly display the unique format the list structure con=-
veys, Like the iteration rule, the Iist may have an inde~
finite number of subtrees; however, R=ARGUT allows the
second arqgqument to be a terminal symbol. Without this
facility the inclusion of the list rule type is hardly jus=
tified since the most usual use of the construct 8 to
separate gqrammatical entities with some punctuation mark,

The first schema is used for display of the
first child, Subsequent children or pairs of children,
depending on the specific list rule, up to the last in the
sibling string, are displaved by the second schema, The
display algorfithm must keep track of which children it has
displayed in traversing the list in order that this labe)
schema structure display the sequence of subtrees correctly,
The third schema is wused for display of the last chilag,
invariably an LOPT node.

As an example of the list rule schemas, consider

the R=ARGOT rule




statements : # statement “";" ... .
The schemas generated to display this rule wouid be

Isl ¢ 31

1s2 ¢ ";"§1

183 : "(statements]”
Note that a NL format control character would be aporopriate
after the ";" terminal in 1s2 and before the literal string
in 183 in orager to place each statement and semicolon pair
on a separate line,

e. Predefined

A predefined display function should accompany
each predefined rule scanner, The display algorithm wil)
pass the subtree created by the predefined scanner to the
named display function. For example, the predefined scanner
"id®™ will scan an identifier, place it in the symbol! taole,
and fill in the TERM node with the information allowing
reference to that symbol! table entry for the evaluator. On
display, ‘the routine ™idout" will be called to cause the

referenced identifier to be displayed.

D. THE LAMGUAGE DEFINITION MODULE

The Lar quage Definition Module is the grammatical data-
basse wutilized by the Grammar Directedg Editor in the 2one
struction and evaluation of an AST, The Language Definitign
Module has a fixed and an interchangeable component. The

fixed comoonent consists of the system pregefined rules and

9S




AD=A100 159

UNCLASSIFIED

20 d

an &

NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 9/2
A CONCEPTUAL FRAMEWORK FOR GRAMMAR=DRIVEN SYNTHESIS,.(U)
DEC 80 W R SHOCKLEY» D P HADDOW




'F":::f""wm”"

functions. The 1interchangeable component, known as the
Language Definition, is comprised of the languaqe-specific
grammar rules, templates, and schemas., In addition, the
Language Definition may optiomally include wuser=supplied
predefined rules and functions supolementing or superceging
those permanently installed in the system,

l. The Lanquage Definition

The primary component of the Language Definition is
the internal representation of the language=specific grammar
as an ordered collection of grammar rules and their assocCi=
ated temolates and schemas. The Language Definition, apart
from user=supplied predefined rules and functions, consists
of a Rule Tree and a string table. The string table con-
tains the character string representation of the templates
and schemas for each rule, The Rule Tree is the ordering
mechanism for the grammar rules which provides access to the
templiates and schemas in the string table., The Ruyle Tree is
a four=tiered hierarchy, the uppermost level of which is a
head node for the tree. The next level consists of a
sequence of head nodes, one for each defined grammar rule.
Under each aqrammar rule node is a pair of head nodes, the
first for the templates associated with the rule ana the
second for the schemas. The fourth, bottom=most tier con=-
sists of leaf nodes containing pointers to the template and
schema strings stored in the string table., The regularity

designed into the template and schema definitions for each
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of the rule types allows accessing any leaf of the Rule Tree
by the Eaitor wutilizing only the operator and rulename
information in an AST node label,

Appendix D is an Intermediate=Level Language Defini=
tion Grammar. Encoded by hand into a Lanquage Definition as
shown in Appendix E, the ILD Grammar orovides the means to
Jenerate a3 Grammar Directed Editor for the construction of
ASTs representing language-specific Language UVefinitions.
When such an AST {s evaluated by the pregefined function
ILD, the result is a language=-specific Lanquage Definition
which may be installed in the Lanquage Definition Module and
utilized to construct applications=orientead ASTs in the
language defined by the grammar, Appendix F presents a sim=
ple example of such an apolications~oriented Language Lefin=
ition from which ASTs representing strictly formatted
memoranda may be constructed utilizing the GDE.

The ILD Grammar allows definition of grammars on an
assembly=language level, i.e., many getails which are com=
putable from the R=ARGOT grammar rule must he entered by the
user., For example, in the construction of an iteration rule
the user is required to enter "ryulenamel” and "i=rulename”
in a consistent manner throughout the formation of the tem~
plates and schemas. However, at this low level the mechan-
isms for checking such consistency do not exist, Thus the
ILO Grammar is seen as a flexible but error=prone too!l suit~

able for use oprimarily as a bootstrap mechanism for the
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definition and implementation of a HNigh=Level Language
Definition Grammar which automatically derives as much
information from the R=ARGOT rule as is possible. For arame
mars in which all nonterminal children of concatenation
rules are to be created and dispiayed in the order listea in
the rule, an extended R=ARGOT notation which provided tne
facility for inclusion of format control information and a
means for specification of predefined functions as head
nodes of concatenations would allow such automatic deriva=
tion, Development of such an extended notation as well as
the corresponding HLD Grammar and function are deferred
until the symbol table and evaluator designs are complete,

2. Predefined Rules

The set of system predefined rules provides the‘user
a mechanism for entering strings representing simple, common
constructs, such as identifiers and numbers, as well as more
involved constructs, such as expressions, which even though
composed of many oparts and perhaps qgenerating multinode sub=
trees in the AST, may be most conveniently viewed by the
user as representing single logical units. Predefined rules
are built=in, ootional extensions to the Language Definition
which provide the language implementor with a set of primi=
tives upon which he may base his grammatical constructs.
The set of predefined rules is modifiable and extensible by
the language implementor through inclusion as an adjunct to

the grammar definition a set of predefined rules which




supercede or complement the set permanently installed in the
Language Definition Module,

Predefined rules mavy be viewed 3s a deviation from
the aqrammar directed editing philosoohy espoused throughout
this work, The use of oredefined ruyles allows the entry,
after all, of syntactically incorrect strings which are not
immediately, in the sense of character=at-a~-time immediacy,
detected and rejected as invalid. For example, compare a
*"oure®, character-at-a=-time grammar directed editor with a
predefined rule augmented GDE on the terminal <string>,
defined for illustration to be the <c¢oncatenation of any
characters except a space, and terminated by a carriage
return. In the pure system, each character is examined and
its validity checked as it is tyoed. In this exampole, if
the user enters a3 string of valid characters and then a
space, he 1s immediately informed that the space iS unac=
ceptable and is able to proceed without retypina that por=-
tion of the string thus far entered. The oregefined rule
system, however, would require that the entire string of
symbols, including the incorrect space, be entered before
rejecting {it, and the user would have to retype the
corrected string in its entirety,

Ne grant that grammar directed editing down to the
smallest indivisible wunit, the character, has a certain
appeal., However, our oredefined rule compromise is

motivated by several advantages and mitigating arguments:
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3. The time lapse between entering even a large
predefined rule inout string, sSuch 3as a3 complex expression,
and re=entering it it it is rejected as incorrect, is short,

p. The time lost in a3 predefined rule system 1in
retyping the wusually short input strings accepted by most
predefined rules is offset by the time that would pe lost in
3 oure system that requires control characters to guide the
tree building via the lanquage definition through the vari=
ous alternatives involved in the larger grammatical cone-
structs, such as expressions, that can easily be handled bv
predefined rules,

c. The syntactic integrity of the AST ijs always
preserved by the system predefined rules since no change to
the AST is made until the syntactic validity of the entire
input string is confirmed,

d. Predefined rules simplify the language
implementor's task by raising the leve)l of the lowest gram=-
matical constructs that muyst be defined in the grammar,
Instead of having to work clear down to the character level,
predefined rules provide as primitives the facilities for
handling groups of characters, such as numbers, identifiers,
and strings, which are the basic building blocks of data
structures in general and programs in particular,

e, Given automatic lexical analyzer and oparser gen=
erators, (redefined rules for the class of grammatical con=

structs envisioned are easil, built.
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f. The suvitable choice of predefined rules frees
the lanquage impiementor from long=winged, needlessly
aetailed grammatical constructions for a wide variety of
regularly=expressible oroductions. Grammars for lanquage
definitions, given such a set of easily understandable prim=-
itive constructions, would bLe more transparent and easier
for the user to assimilate,

It is recognized that taking the predefined rule
approach to its extreme limits could result in a compiler~
like editor wherein huge segments are submitted for analysis
to exceedingly complex predefined rules, thereby negating
the benefits to be gained from a more rational qgrammar
directed editing environment. However, within the guide=
lines presented nere, the predefined rule approach has dis-
tinct advantages and leaves open avenues for exploration to
the lanquage implementor.

3. Predefiped Functions

Nodes in the AST undergoing evaluation faal)l into
one of three cateqories: undefineg, head, and function. The
class of undefined nodes includes all free nodes which may
still exist in the AST, Head nodes node3 are the HEAD, ITER
and LIST operator nodes created for synthesis of the AST,
all of which are synonymous to the evaluator. Head nodes
have no computational caoabilities during the evaluation
process but rather provide structure to the AST. Function

nodes have as their operator one of the predefined
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functions. Function nodes are generated by concatenation
and predefined rules during synthesis of the AST and result
in calls to the corresponding predefined function during
evaluation, Function nodes may be leaves, as in nodes which
reference symbol table entries, or they may be interior
nodes. If interior, function nodes must have the number,
order, and type of subtrees expected by the predefined func=
tion,

The set of predefined functions defines the range of
computational power available to the evaluator and thus lim=
its the capabilities available to the user of the GDE. A
proposed set of system predefined functions, based on the
primitives discussed throughout {(Pratt,19751, is presented
in Aopendix G. This set of system functions may be aug-
mentgd by the ijanquage implementor through additional or
superceding function definitions included as extensions in

the Lanauage Definition.
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Iv. PROGRAMS AS DATABASES

A. INTRODUCTION

The material contained in this chapter was originally
developed during the search for a solution to a particular
problem: namely, that of storing the tree representation of
the synthesized program in secondary storage, with
complicated links to other data structures recorded in the
leaves, {in such a way that pointer and reference integrity
could be maintained. This problem is aggravated by the
consideration that such a stored structure might well pe
reloaded at a time when the physical contents of shared
memory Spaces currently in use Dy the system are quite
different from the environment existing at the time that the
tree structure was originally created.

Once this problem was recognized as being a database
management problem, to which known techniques of database
design were applicable, the solution was straightforward.
The database design techniques described throughout this
chapter are taken from (Kroenke 1977]. The relatively
unorthodox view of orograms as complex databases afforded by
this insight, however, is of more general interest since it
provides a new perspective on the nature of orogramming
systems., In particular, these considerations provide some

justification for the hope that grammar=-driven tree

103




e p—

synthesizers are capable of buildina up a languaaqe=~

independent semantic sStructure.

B. PROGRAMS AS COMPLEX RELATIONSHIPS

In viewing programs as databases, we first recognize
that the semantic contents of a program must be accessed by
two entities: the human reader or writer, and the processor
intended to execute the program. Comments axcluded, the
information available to these two entities 1is almost
identical: that is, the human user can oredict exactly the
operation of the processor for a qiven program, and the
processor deterministically executes the encoded intentions
of the programmer. So without loss of generality, we may
initially consider the program as a3 database accessed by the
processor. In the case of a machine language program, the
processor is the real machine on which the orogram is to
execute, For a higher=level language, the processor i3 the
hardware=software combination, or virtual machine, which is
capable of translating and executing the program.

The "semantic content”™ of the program is the collection
of potential evaluations which the processor may be required
to perform throughout the course of execution. For the
moment, we disregard the order of execution, Each
evaluation consists of the selection of one of many

primitive operations which the oprocessor s capable of

performing, and the application of that chosen primitive




operation to a number of arguments, contained in one or more
registers, or memory locations addressable in some wayv.

Uoon reflection, it 1is clear that ooth the set of
primitive operations and the set of adoressable memory
locations are databases in their own right., The keyname, or
code by which an entry can be uniquely located, for the set
of primitive operations is the operation name, or opcode,
and that for the collection of potential arguments is the
address,

Clearly, the set of potential evaluations 1is, 1in the
terminology of database theory, a complex relationship
between oprimitive opberations and registers. A given
operation may be apolied to many different sets of arguments
within the course of a program execution, and a given
register may be the argument for a numoer of different
operations. There is no functional relationship between
items of the two databases in either direction, which means
that neither keyname can be used to wuniquely identify an

item in the complex relationship between them.

C. DECOMPOSITION OF THE EVALUATION RELATION

Standard database design techniques specify several wavys
by which each of ¢the elements of a complex relationship
between two databases can be referred to in a systematic and

unambiguous way during database access. Two general methoags

of approach are used. One is to (arbitrarily) force the




relationshio to be simple (many~to=one 1in one direction
only), by rejecting from the allowed range of possibilities
any mempers of the relationship which would cause the
relationship to be complex. In this case, the «xeyname for
one of the 'inderlying databases can be used to umnambiguously
refer to members of the relationshin as well, The second
method 1is to decompose tne relationship into two simole
relationships by constructing an intersection database,

There exist programming systems in which the first
strategy 1is8 adopted. For instance, if the restriction is
made that registers may not be re=used, so that at most one,
and only one, oprimitive operation 1is applied to a given
register, a purely functional, or no=assignment orogramming
system 1is obtained. In such 3 system, the only named
semantic elements are functions and constants (whick may be
regarded as functions). Registers need not be named since
whenever one is needed, it can be drawn from a pool, wused
once, and discarded by the processor.

This approach is considered mathematically elegant, but
it is not much in use in non~academic programming systems,

In the second approach, an intersection database is
created, consisting of one entry for each gistinct memper of
the complex relationshipn. As a minimum, in order to allow
reference to the generating databases, each entry in tne
intersection database must contain the keynames for those

entries in the original data sets with which it is




associated., Thus, for a orogramming notation, each entry in
the intersection database must contain, at a minimum, an
opcode and a reqister address for each argument, in some
form,

The archetypical entry for the intersection datavbase
corresponding to the evaluatipn relationship is thus:
0PCODE ADDRESS( 1 ) ADDRESS{( 2 ) . . '+ ADORESS( N)
This format is recognizable as the atomic unit of notation
for most common orogramming sSystems, from machine code to
high level languages. Each sinale such entry corresponds to
what is normally referred to as an instruction. In summary,
we assert that a orogram 1S nothing more than the
intersection database for instances of the evaluation of
accessable operands by the primitive operations available to

the evaluating processor.

D. CONTROL STRUCTURE

We have heretofore ignored the question of how the order
of execution of the evaluations is to be specified within
the program (the basic elements of which are now seen to Dpe
entries in an intersection database). This order
corresponds to the logical access sequence of the set of
instructions, Thus, we may equate the ordinary notion cf
the control structure of a program, to the database-oriented
notion of a loaical access structure for the program

database. The simplest access mechanism for a aqatavbase s
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to order it as a simple sequence., Undger this protocol, the
elements of the database will be presented to the accessing
entity in a strictly invariant sequence,

Such an accessing structure is realized in suych simple
proaramming sSystems as that of a keystroke=proqQrammable
calculator, A sequence of keystrokes can bpe entered and
automatically reproduced at will, but there 1is no
possibility of automated branching.

Such programming systems are fundamentally Jlimited 1n
mathematical computational power, The simplest modification
to such an access regime is to allow conditional oranching,
so that a part of the instruction seguence may be repeated
or skipped, based on the contents of a reqgister at the time
the branch is reached,

Machine and assembly~-tevel! programming systems, as well
as such high=level languages as BASIC and FORTRAN, are

organized on such a plan.

E. STRUCTURED PROGRAMMING SYSTEMS

The disadvantage of a3 sequential access mechanism s
that the resulting database does not have local integrity,
Instruction sequences which may be logically adjacent under
certain circumstances are not necessarily physically
adjacent. This access organization presents no real
disadvantages for the machine processor with a random=-access

architecture, but can be Aquite confusing for the human




proqrammer, To render the program GQatabase more accessible
to the wuser, the notion of SsStructured programming was
developed. This orqanizational technique consists of
organizing the access of a orogram database in a
hierarchical (tree-like) manner, so that orogram control
follows a hierarchical program structure which ¢an be
expressed as a string generated by a context=-free grammar
(and thus has an associated ohysically hierarchical
structure induced by the gqrammar), 3Such program control
facilities as functions and subroutines were the earliest
"structured constructs”, The syntax of such languages as
PASCAL and ALGOL, bhowever, were consciously designed to
facilitate the expression of a hierarchical control
structure, and make the expression of ] disordered,
sequential control structure less attractive than the use of
"structured™ control operators. It i3 this historical
development which encourages us to hope that a !'anguage<
independent semantic tree structure may be built wusing a
grammar=-driven tree editor., Basically, we note that it has
become a conscious desian principle in the develooment of
structured programming languages, to ensyre that program
control flow follows the syntactic organization of the
| anquage. The underlying set of primitive operators have a
great deal in common. Language-dependent primitives can be
added to the set available to the processor and evaluated

without regard to the specific svntax by which they are




expressed, provided that the overall control structure of

such additional primitives is also hierarchically organized.

F, PHYSICAL REPRESENTATION OF A TREE-STRUCTURED PROGRAM

Ne are left with the problem of physically representing
a tree=structured program 1in 3 sequenttally organized
physical memory Space. The problems encountered are
precisely those encountered when attempting to implement any
hierarchically orqanized intersection set. Thev stem from
the requirement to refer, directly or indirectiv, to the
entries in the parent databases from more than one place in
the intersection database. Two general strategies, each
with its own advantages and disadvanteges, are currently in
use in database management sSystems.

1. Sequential Tree Representation

This strategy is implemented by representing the
tree as a linear list of nodes ana their contents in
pregorder seauence. References to the parent databases are
empedded in the listing by keyname, The complexity of the
relationship implies that each such keyname must be repeated
many times throughout the list. Special delimiters are used
between node listings to indicate whether the next node 1s a
child, sibling, or uncle of the last. [+ one of the
keynames is to be changed, a search of the listing must be

made to find all of its occurrences, A second major

disadvantage is that in order to access any part of the
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list, the list must be traverseg seqguentially from tnhe
beginning, 0On the other hand, no pointers need oOCcCur
anywhere in the list, so that it can be moved about freely
from one place to another without change.

2. Linked Representation of Traees

Trees are represented in this strategy by nodes
linked together using pointer fimlds within each noae. A
pointer is either the absolute address of the entity pointed
to, oFfr an oftfset or array subscript which can be useqa by
routines in the system to calculate such an address. The
salient feature of a pointer reference is that it allows
reference by some mechanism which 1is independent of the
value of the referenced entity. Thus, the value of the
entity itself can be changed without changing all of the
references to it, which are still valid (provided, of
course, that the change is made without physically moving
the changed record,) When the tree itself is represented by
means of nodes linked with pointers, it is common to link
the leaves of the tree to the parent datahases with pointers
as well, [t is assumed that a means exists to distinguish
such external 1links from the internal links defining the
tree structure itself, This representation has as one major
advantage the ability to be auickly traversed (oy following
pointers)., Another msjor advantaqe of this strategy is that
information in referenced databases need only be recorded

once, and can be changed without wupdatinag any pointers,




Deletion of information is somewhat more gitficult, but can
be accomplished by constructing and maintaining Ccross-
reference lists (inverted 1lists) which contain pointer
references to all nodes in the tree referring to a qgiven
record in the parent database. The primary disadvantage of
such a representation is that the structure cannot be moved
or stored without a great deal of pointer modification, The
use of relative pointers is an inadequate solution, sSince
the consistency of references to the parent databases, which
need to be moved and managed as separate entities, must
still be maintained.

3. A Hybrid Strategy for Tree Representation

An examination of ¢these characteristics indicates
that the linked representation is preferable when changes
are to be made to either the parent or tree databases, but
that the sequential representation is preferable when the
database is to be transmitted from one location to another,
or stored unchanged for a relatively long period of time.
(Storage is equivalent to transmission from one time to
another, and is thus logically the same problem as that of
movement.)

we conclude that the linked representation is an
appropriate representation for the program tree dguring
synthesis and evaluation, but that the program tree should
be moved (or stored on secondary storage) in sequential,

pointer-free format. Links to the parent databases are
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converted from pointer references to reference by keyname,

The next section addresses the problem of how conversion

between the two representations can, in general terms, bDe

accomplished,

G. PROCEDURAL REPRESENTATION UF DATA

In order to incoroorate these ideas into a feasible
design, we consider the facilities that would have to exist
in such a system. Since the program tree is to be operated
on in main memory with a linked representation, we may

assume that a data manipulation package exists which 1is

capable of synthesizing and maintaining all of the pointers

required to keeo the linked structures coherent and

consistent, Consider the process of removing a sequentially
organized tree structure from secondary storage and loading
it into intermnal memory. This process must consist of
ordering a particular series of function activations with

particular arguments from the data manioulation package,

causing the desired structure to be built within physical

memory. The sequential representation is seen to be nothing

but a program for the data manipulation package, which s
itself a processor with a number of primitive operations.
Moreover, a strictly sequential! control orotocol for
this program is possible, given a reasonably powerful set of
primitives in the data manipulation package, since a tree

can be synthesized in strict pre~order sequence (the parent




for each child exists at the time of the child's synthesis.)

ne conc¢lude that the appropriate secondary
representation for a program tree is as a sequential list of
instructions, to be translated by some simple interpreter
into a series of calils to the data manipulation packaqge,

The offloads or transmit process, consists of a pre=
order traversal of the linked representation, emitting the
aopropriate instructions for recreating the skeleton of the
tree and filling in the contents of each node as it is

reached. At the same time, references can be removed from

the appropriate cross=-reference lists, triggering removal of
the data item from the oparent database when a reference
count of 2zero 8 reached, During onload, the skeletal
structure of the tree is recreated, and external references
in symbolic form reloaded into the aporopriate parent
database. Pointer and cross-reference 1list creation and ¢
maintenance is performed automatically by the pre-existing
data manipulation package.

The secondary represantation can thus be viewed either &
as data, representing the tree in linear format, or as a

program for the data structure manipulation package which

will cause a logically egquivalent tree to be reconstructed
in available memory.

As a beneficial side effect, {if the capability s
installed to allow the onload and offload translators to

read to or from strings in main memory, the described svstem




provides an easy way to copy or move suybtrees, as well as to
encode tree=building templates efficientlivy. In fact, the
proposed mechanism becomes the method of choice for any and
all movement of tree structures from one location or time to

another, since the data in the transmitted stream s

entirely logical, containing no reference to any
implementation details. The process would even allow
internal representations to be transmitted from one

installation to another with a completely different
implementation, since all implementation-dependent data s
removed during the offload process and reinserted during the

onload process,

H, SUMMARY

In this section we have viewed programs as specialized
databases, ang have found that standard database moaels
correspond n{ééiy to various programming language stvies,
Two fundamental conclusions have been reached, The first is
that it seems very likely that grammar=driven tree editors
can be used to produce trees representing the control
structures for common programming languages in a SsSyntax-
independent, directly=evaluab!e format, This hope i3 based
on the direct expression of hierarchical control structures
by the syntactic hierarchy impolicit in the defining grammars
of current programming languages, and the recognition that a

small set of such control structures provides the common




pase for current language design,

The second result is the solution to a technical
problem: that the appropriate format for such program trees
is in linked form when the tree is undergoing modification,
and as a sequential, orocedural, pointer-free list of
instructions when the tree i; being stored, or transmitted

from one point to another.
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V. A PROTOTYPE SYSTEM DESIGN

In this section, the design for a prototype system
demonstrating the feasibility of the ideas developed in
previous chapters is described. Since the implementation of
the described system is, at oresent, incompliete, the design
is oresented only in broad outline, A full descriotion of
the demonstration prototype will be provided as a Technical
Report when the initial implementation is complete.

The approach taken is to first describe a complete system
for a qgrammar=-driven, |anguage Iindependent programming
environment, and then select a subsystem for implementation
as a prototype feasibility study. The prototyvyoe subsystem
wil)l be used to generate statistics concerning memory size
and computational efficiency, as well as to refine the user
interface, with the possibility remaining of extending the
prototype to a more complete implementation at a future
time.

A basic block diagram of the complete system is provided as

Figure S,

A, SYSTEM MODULES.

The prooosed system consists of the following modules:
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1. Data Structure Support Module.

This module contains packages of functions, each
package implementing a specific abstract data type needged DYy
the remainder of the system, At a minimum, the abstract

data tyoe packages needed include one supporting an

ingefinite number of indefinitely large association lists,
(to represent the contents of tree nodes), and one
supporting aeneral ordered trees, optimized toward
reasonably efficient traversal in all directions. In

addition, the tree support package must include a facility
for linking the leaves of trees to other data items, such as
strinas, symbol table entries, numerical contents, and so
on. Each tree node (internal as well as leaf) must bpe
linkable to an association list representing the contents of
the node.

In addition to supporting tree and association list
data types, this module is responsible for supporting any
additional data types for which the need arises and which
are not supported directly by the language used for
implementation, (In particular, the implementation
currently being developed requires a very primitive string
table which serves as a rudimentary symbol table.)

2. Grammar=Driven Environment Module.

This module provides an editor~like interface for

the user, It translates user commands into aporopPriate

system actions, which include editing functions, directives
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to evaluate a particular program structure, and movement of
Abstract Syntax Trees from secondary to primary storage and
pack again. A major component of thi1s module 1is the
grammar=driven synthesizer itself.

3. Memory Management Module,

This module comprises the actual system orimary
memory itself, which is wused to store the LD (Language
Description) and AST (Abstract Syntax Tree) currently in
use, In addition, the primary memory module contains the
data structures being manipulated by the Data Structure
Support Module,

4., File Management Module,

This module implements a single~user workspace on
secondary storage which contains all of the LD's available
to the user, as well as all of the AST's which may have been
previously created and saved. These components are stored
in seaquential, opointer-free format as discussed in Chapter
Iv.

S Inmput/Qutout Manifolds.

These modules manage the system input and outout
streams, which may be redirected as required by components
of the system (including the wuser) to various physical
devices. The inmput stream may be taken from the keyboard., a
file on secondary storage, or a string in primary storage.
This assignment may be changed dynamically during the

operation of the system. Similarly, the output stream may
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be dvnamicalty directed to the C(RT, a string in orimary
storage, or to a file on secondary storage, (The term
"manifold” is wused to suggest that these functions may be
thought of as three=position switches, the setting ot which
may be changed at wil) during system operation,)

6. 0Onload and Offload Transliators,

These modules, contralling the Data Structure
Supoort facilities, convert the sequential gata
representations stored on secondary storage to tne linked
representation needed when an LD or ST is loadea into
primary memory, and vice versa, As a secondary feature,
since the input and output streams may originate or pe
directed to internal strings, these modules can be used to
"quote™ or "unguote™ tree structures, as when a template is

translated into an actual subtree replacement.

B. PRE-EXISTING MODULES.

The curr&nt implementation is being made using the C
Programming Language on a POP=-l! with the UNIX Operating
System. (UNIX is a trademark held by Bell Laboratories,
Inc.) This software combination provides a (C-accessible
interfac:. to memory and file management facilities. In
additiony 3 complete library of string handling and
input/outout functions is available., In consequence, the
memory 3and file management modules described above may De

thought of as already in existence, for the opuyrpose of
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describing the oprototype subsystem, In adoition, keyboard
and CRT interfaces are already operational: umder the UNIX
operating svstem, hardware interfaces are mapped into the
system as files with conversion routines provided
transparentiy., Thus, for the Input/Qutput Manifold module
we need only provide a means of daiverting the input and

output streams from one file to amother, or to main memory.

C. SUBSYSTEM SELECTION,

Given the broad outiine of system module function
provided above, a minimally capable prototvpe subsystem can
be selected for initial implementation. Such a subsystem
must DbDe capable of initialization, svynthesis, display and
storage of an AST in order to demonstrate convincingly the
feasibility of the concepts outlined in previous chapters,
Facilities to evaluate (execute), revise, and debug
previously entered AST's may be deferred, as may the
facility to easily install a new Language Definition.
Therefore, the capabilities praoavicded by each of the modules
in the orototvpe subsvstem may be redefined as follows:

1. Data Structure Support Module.

Full packages supporting general ordered trees and
association lists are needed. In addition, a orimitive
capability to store and reference string values is neeged.
The capability to support sophisticated symbol table

structures may be deferred to Such time as semantic
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information is needed to allow execution of AST structures.

2. Grammar=Driven Environment Mgdule.

The only major capability required by the prototype
subsystem is the "append"™ function, which can be usea to
create AST structures, In addition, a working display
mechanism with simple cursor control facilities is neeged,
A frame-oriented display mode 1is satisfactory for thne
prototype system (although eventually a screen=oriented
display driver would be desirable). Finally, facilities for
storing and retrieving AST's to and from secondgary storage
as well as a facility (however cumbersome) for installing
new )language definitions is needed.

3. Input/Qutout Manifolds.

These modules need to be implemented in full, in
order that secondary storage may be used, and in order to
allow templates existing in primary memory to appear in the
input stream for orocessing by the Onload translator.

4, Onload and Offload Translators.

These comoonents also must be fully implemented for
the same reason as the Input/Output Manifolds, The
implementation must be flexible enough 8o that as more
sophisticated data structure packages are added, the
sequential representation can syntax can be extended to
accomodate onload and offload of keyfields in the new

structures,
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S. Bootstrap Procedure. i

The system can be initialized as follows, Ne i
currently regard Language Definitions as bpeing written in é
one of tnree languages, or notational systems! a high=level
format (which is to consist of R=ARGOT notation with display
and semantic specification extansions), intermeadiate-level,

(the notation developea in Chapter I[1I), and low=level, (the i
sequentialized, pointer=-free reoresentation of an internal &

tree corresponding to the desired LD, using the language

alluded to in Chaoter IV.). K

There is no fundamental difference between the
intermediate and low=level formats, since they represent two
alternative representations for the same database,

Translation from one format to the other 19 performed

automatically by the onlocad and offload translators when .
this database is moved to and from secondary storage.

In order to bootstrap the system, once all of the i
modules have been compiled and linked, it is necessary only
to perform the job of manually translating an intermediate~
level description of the intermediate~level language to the
corresponding low=level description, and install the !
resulting text as a file accesible to the system using a :
conventional editor.,

At this point, the system facilities can be actuated

to load the file as a language descriotion into system

primary memory. During the load, the onload transiator will




convert the description into a linked representation of the
database needed to describe and guide the synthesis of new
language descriptions in the intermediate format. That is,
the system itself can now be usedg to create, as a grammare

driven editor, additional Jlanguage descriptions.,
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VI. SUMMARY,

A, CONCLUSTIONS.

In the prececina chapters, a conceptual foundation for
the interactive creation of databases, structured
nierarchically according to a given context=free grammar,
has been provided. The orimary conclusions supported DYy

this work are:?

1. A basic model for the described process is that of a
valig sentential form generator, rendered determinate Dy
allowinag for the interactive selection of which production
to apply and at which point in the already=derived structure
the selected substitution is to be made.,

2. Notations exist (e.g., the R=~ARGOT notation) for the
specification of general, context=free grammars which are
both human-oriented and directly interpretable as the
knowledge base for such a system.

3. The basic mechanism correctly interprets ambiguous
or incomplete qgrammars, as wel! as allowing for the
synthesis of correctly labeled incomplete derivations.,

4. Analogous mechanisms can be described which derive
and display not strings, but derivation trees which are
morphisms of validly derived strings wunder the specified

grammar,
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S. The grammatical notation can be transformed into
context=independent operation codes with arquments which can
be stored in the leaf nodes of the derived tree in such a
way that subsequent synthesis proceeds correctiy, and
subtree deletion can be efficiently and consistently
performed without examination of the surrounding context in
the tree,

6. The resulting derivation trees can be used to encoge
semantic information in such a way that the trees can be
evaluated correctly without further reference to the
syntactic, as opposed to physical, structure of the tree,
(This assertion is a speculation, not a firm conclusion,)

7. A method exists for storing such structures in such
a way that their consistency does not depend on any external

data structures save the language definition itself,

B. WORK IN PROGRESS

Implementation of the prototype subsystem 1is currently
in progress, with no difficulties currently foreseen. The
only module awaiting final coding and test is the Grammar=
Driven Environment module itself, and the ailgorithmic
soecification of the functions needed has already been
accomplished. Provided that no further difficulties are
encountered, a complete description of the prototype
subsystem will be later provided as a Naval Postgraduate

School Technical Report.
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The oprototype subsystem code is oriented toward a
demonstration of technical feasibility as opposed to storage

or execution time efficiency. However, it has been written

in a highty=modularized manner, so that after

instrumentation and performance measurements appropriate

o oo

modifications can DbDe made fairly easily. An attempt has
been made to provide for the extension of the orototype
system to a more complete realization of the original system ‘

design, V

C. FUTURE RESEARCH DIRECTIONS.
After completion of the prototype subsystem, two

directions are indicated for futyre investiQation,

i{. Extension of the Prototvpe Subsystem,

a. Svymbol! Table Impiementation.

A generalized symbol table data tvype must be

defined which will adequately support a wide range of 1;
§ praogramming languages.
b. Semantic Action Implementation,
A class of primitive operations (including 4
access facilities to the defined symbol tavle structure)

must be formulated, provision made for l|anguage~implementer }

definition of additional primitives, ana an AST interpreter

l written,




C. Pattern=Matching.

A pattern=matching facility should oe provided
as part of the user interface as a sophisticated means of
cursor control, A fairly simple pattern=matching
capability, when combined with the pre=existing capability
to access the AST in a syntax-oriented way, would allow the
user to search and access the Structure in very
sophisticated ways; e.g. such commands as "find the next
occurrence of an assignment to identifier a" could easily be
formulated. Moreover, when combined with a relatively
straightforward debug facility, (for example, setting of
break=points) a very highelevel program test facility could
be provided.

d. High Level Language Descriptions.

The high=level format for both syntactic and
semantic language specification should be formulated and
implemented as a more convenient means for implementing new
1anguages.

e, Debugging Tools.

Provisions should be made to allow the user to
set breakpoints, access the current data environment, and
order step~by~-step execution modes from the editor.

f. Dvnamic Language Chanqges.

The feasibility of allowing language changes to

be made dynamically during AST creation or execution at

points specifiable in the Jlanguage oaoefinition should oe




investigated. Related to this problem is the provision of a
facility to link (perhaps dvynamically) one AST to another.
g« Increased Storage Efficiency.
Once basic design parameters, now indefinite,
(Such as number of orimitive operations) are made final, the
desirability of packing data fields into AST nodes rather
than using the space=inefficient association list
implementation, and the resulting impact on time~efficiency,
should be studied.
he Full User Interface.
Deferred edit functions, such as delete and
insert, should be installed in the GLrammar=Uriven
Environment Module.

2. Additional Applications for the Technologvy.

The conceptual framework oroviged by this opaper is
sufficiently general to support unexpected apolications in
areas quite distant from the field of programming
environment design. A few such aoplications are suggested
below?

a, Generalized Editing,

Generalized editors, as described in I[Fraser
1980), are editors which provide for the manipulation and
disolay of data structures other than text files. The
mechanism §s wellesuited for the direct editing of a

hierarchically organized database of any type,
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b. Sparse Programming '.anguaqges.

Current programming lanquages are designed with
a parser-pased implementations as a fundamental assumption,
For that reason, they typically include many keyword and
punctuation symbols which are irritating, because
superfluous, to human users, Because the descrioed
technology can utilize ambiguous grammars, sparse lanqQuaqges
with the minimum amount of punctuation needed for human
comprehensibility can be described which could be
implemented using grammar=driven synthesis as the
fundamental input mechanism. In fact, improved performance
from the synthesizer could be expected fo~ such a “"pseudo=
code"~like lanquage, since the inherent semantic density of
the derivation tree could be made very high,

ce Artificial Inteliigence Applications.

In the described design, considerable pains have
been taken to provide a simple, uniform method for grammar
rule and point of application selection, suitable for use by
a8 human operator, There i3 no fundamental! reason why very
complicated heuristic methods could not be used, however, to
select the rule to be applied and the place in the current
structure the application is to be made. For instance, a
production system (in ¢the Artificial Intelligence sense)
could be used to perform this function. The resulting
hybrid system would have a heuristic front end, and an

algorithmic back end, with the desirable property that
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whatever structure the heyristic front end attempted to
build, the resulting structure would alwavs De gquaranteeg to
be correct in terms of the "deeo structure” specified by the
)anquage description, Attempts by the heuristic module to
perform inconsistent modifications would be detected,
prevented, and reported by the synthesis module, A
knowledqge representation based on such a system would be
able to interact with the wuser in very irregular, and
occasionally incorrect, ways, while preserve a fundamental

internal database with guaranteed consistency.
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APPENULX A, NOTATIONAL SYSTEMS FUR CUNTEXT=FREL ER@MMA@S
le BACKUS=NAUR FURMAT (in R=AKGUT) i‘
context=free=grammar: + production ., |

production: non=terminal =" ( riqht-hgna-sice ] "." .

right=-hand=side: + construct .
construct: { terminal | non=terminal } .,

non=terminal: "<" string ">" .,

f
terminal: "string”. L
|

we assume that "string™ is a sequence of any appropriate

character set not including the metasymbols. %

Note tnat this notation is in itself a regular language,. 5
2. ARGOT NOTATION (in R=ARGOUT) F
ARGOT: + rule . y
rule: rule=-name ":" concatenation, E
concatenmation: tsub=-expression .
suo=expression: { optional=iteration
+ simple=iteration
{ list=iteration
i option
i alternation
i\ optional=alteration
t rule=name
i terminal
{ group
} .
ootional=iteration: "x" sub-expression . !
simple-iteration: "+" sub-expression .
listeiteration: "#" sub-expression subeexpression ", . ., " .
opotion: " (" concatenation “]*" . f
132
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alternation: "{" concatenation " " alternatives "}" .
optional-alternative:"{"concatenation "!" alternatives"]" .
alternatives: # concatenation "i" . , . .

group?! "(" concatenation ")" .

terminal: * " " string " * " ,

rule=-name: string.

{("string” is taken to be a pregefined rule.)

3. R=ARGOT (in R=ARGUT)
R=ARGOT: + rule .
rule: rule-name ":" expression "." .

concatenation
iteration
list=-iteration
alternation

¢ +fiela .

expression:

J e ee o

concatenatio
iteration: “+" rule-name ,

list=iteration: "#" prule=name field ". . . " .

alternation: "{" rule=name "|" alternatives "}" .
alternative: # rulee=name ";" . . . .
tiela: { rule=name

! option

! terminal

} .

option: "(” rule=name "1"
terminal: ® " " stering " " " ,
rule=name: string .
Note that this notation s, in itself, a regular

l anguage.
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APPENDIX a&. A GRAMMAKR FOR PASCAL
IN R=ARGOT
PASCAL: "program" identifier "(" name=list ")" ";"
' olock "."

block: € laoels 1l constants 1 { tvpes }J{ variables |}
[ subroutines ] "begin" statements "endg" .

lapeis: "label" 1ntegers "; .

.
’ L3

constants: “constant" c-vecls

.
(4 L]

types: "type" t-dec!s

variabies: ®"var”™ v=decls ";" .
subroutines: + s~decl .

integers: t+integer .,

c-declis: # c=decl ";" . . . .
¢=-decl: identifier "=" constant ,
{ t-gecls: # t=decl ";" . . . .
t=decl: identifier "=" type .
vedecls: # vedecl ";" . . . .

vedecl: name=list type .

name"ist! B ‘dentif‘er ’ * & 3

s=geci: { op=decl
{  tedecl
be
"orocedure” identifier [ parameters )} ";"
block ;"

p=dec!

3

| f-decl: "function” identifier (parameters] ":" identifier”;"
| plock ":" .

i parameters: "(" param=list ")" .

param~iigst: # param=-section ";" . . . .
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param=section: f=params
: veparams
i p=params
i Cc=params
}.

t=params: "functron® name=list ":"™ igentifier

v=params: "var"” name=list ":* identifier . ;
p=params: "proceagure"” name-list .
c-params: name=list ":" identifier .

type: { scalar=type f,
H subrange=-type
1 pPointer=tyoDe
{ set=type

v array=typoe

i recora=-type

H file=type

H identifier

b

scalar-tyoe: "(" name-list ")"
subrange-type: constant "..” constant . L
pointer=type: "t jdentifier .

set=type: [ packed ] "set” "of" simple-type .

array=-type: (packed]l "array"™ "[" subscripts "]1" "oft" type

record-type: [ packed ) "recorag”™ [ field=list ] “enag”

file=type: ( packed ] "file” "of" type .

packed: “"packed” . :
simple=tyoe: { identifier 3
{ scalar=type t
! subrange=-type i
N .

fiela=list: var~fields
mixed=fields

- .- .,

mixeg=fields: fixeg=fields [ and=-var=fields | .

WA
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anag-=var~fields: ";" var~fielas ,
tixeg=fielas: & fixed=field ";" . . . . ,
fixeg=fiela: name=-list ":" type . ,

var=fielas: "case" [ tag ) igentifier “of"
variants .

variants: # variant . . . .

variant: constant=list ":" (" [ fielag=list }J ")*

PRRE NS

constant=~list: # constant ’ « . o .

-

s

statement: ( integer }{ action 1 .

.l st L

procedure=~call
compound
if-statement
reoeat

while

for
case=statement
goto

with

action: { assignment
[]
]

i
3
i

-~ e -

assignment: variable "3" expression .

procedure~call: identifier [ arguments ] .

argumentg: "(” arglist ")" .,

|
i
argiist: # argument *," . . . . )
|
argument: { identifier ?
i\ expression i
b i
compaound: “beqgin® ‘
statements
"end” ,

ifestatement: "it" expression "then”
statement
( else=part )} .




else-part: “else"
statement

repeat: “repeat”
statements
*until"® expression ,

while: "shilé~ expression "go"
statement .

for: "for" identifier ":=" expression t=or=d expression
statement .

t=or=d: { downto

' to
} .

downto: “"downto" .
to: "to" .,
case-statement: "case” expression "of"
cases
‘end" .
cases: # case ";" . . . o

case: constant<-list ":" gtatement.

with: "with™ variables "go"
statement .

goto: "qoto" integer .,
variableg: # variable "»" . . o .

expression: { 1t

Vo 1te

H eq

i gte

H gt

i neq

i in

i Seexpression
)

L J
1t: s-expression "<" s=expression.
Jte: s—=expression "<=" g=expression.

eq: sS-expression "3" s-expression,

udou




' gte: s-expression '>3" gs-expression.
gt: s=expression ">" seexpression.

neq: s=expression "<>" s~expression.

in: s=expression "in" seexpression.

s-expression: | sign ] u~expression,

{ plus=sign
i\ minus=sign
)

plus=syqn: "+"
minus~sign: "="
u~expression: { olus
H minus
i or
i term
)

plus: term "+" term .
minus: term "=" term ,
or: term "Oor" term .,

times
quot
div
moc
and
factor

terms

- we @ wme A

FC S

times: factor "2" factor ,
qQuot: factor */" factor .

giv: tactor “div" tactor .
moa: factor "mod" factor .

ang: tfactor "and” tactor .
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i - . .

factor: { aroue
i\ not
H set
H veor=¢c
) .

group: "(" exoression ")" .,

not: "not" factor .

set: "(" | set-members )] "}~ .
set=members: & setemember . . . .

set-member: range

{
i expression
}

L ]
range: expression ",." expression .

veor=c: { unsigned=constant
H variaole
}

variable: identitier { modifiers ) .
modifiers: + modifier .
subscript

field=reference
indirection

mogaifier: ¢
:
[}
[ ]
} .
suboscriot: "{" exoressions ")"
field=reference: ",." identifjer .
indirection: "t"

expressions: ¥ expression "," . . . .

It is assumed that predefinea input

the rule names “"integer”, "identifier"®,

*unsigned~constant”,

scanners exist for

“constant", ana




APPENDIX C: TRANSFORMATION TEMPLATE GRAMMAR

The following grammar defines svmbol strings which are
interpreted as calls to tree=building and noage-modifying
routines whose existence is assumed, 3as is the t{nterpreter
which makes those calls, Also implicit in the following de~-
finitions ang discussion is the notion of a "current nodge”,
gefined for the purpose of the application of temolates to

be anvy free node in an AST,

template: { subtree | siblist } .
subtree: boundnode f{childlist]) .
cnildlist: "(” sibltist ") .
siblisgt: # freenode ":" ... .
boundnode: boundop rulefield .
freenode: freeop rulefield .

rulefield: "," rulename .

boundoo: { HEAD { ITER | LIST | pdf } .

odf: { (predefined functions) ) .

freeop: { NT | ALT | COPT | IQPT | LOPT ! TERM } ,
rulename: { (grammar rulenames)

! (predefined rulenames) )} .




The Template Grammar produces operator and rulename
pairs, both bound and free, punctuated by the terminal sym=

bols “(", ":", "," and ")" which are interpreted as follows:®

"(®": Create a child node under the current node, make
the noce created the current node, and overwrite the OP
field with the operator listed nex:,

"?": Create a right sibling of the current node, make
the node created the current node, and overwrite the OP
field with the operator listed next,

*,%: Overwrite the RULE field of the current node with
the rulename listed next,

")®": Make the father of the current node the new

current node.

The first symbol of every template is an operator, ei=
ther free or bounds which overwrites the OP field of the
current node, The current node is the only noage in the AST
which s modified in anvy way by a temolate; new nodes may
be created, but always within the context of the current
node.

The templates defined by this grammar allow definition
of the tranaformations in Chapter III. The following exam=
ples §{1lustrate the various constructions most commonly en=-

countered,
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l. Single node replacement, rule field unchanged: 3
Trangsformation: “
NT,a => ALY, a |
Template:
ALT,a
2. Single node replacement, operator and ruiename modifiea:
Transformation? '
ALT,a => NT,r i
Template: }
NT,r i
3. Replacement with sibling string:
Transtormation:
IOPT,i => COPT,r2 NT,rl IQPT,i
Temolate:
COPT,r2 7 NT,rl 7 IOPT,i

4, Replacement with sSubtree:

Transformation:

NT,ec => NT,r1 COPT,er2 NT,r3

Template:

HEAD,c ( NT,rl 7 COPT,r2 i NT,r3 )




APPENDIX D: INTERMEDIATE-LEVEL LANGUAGE DEFINITION GRAMMAR

ILD: langname rulelist [(extensions).
rulelist: + ruyle,
rules { c=rule

a=rule

i=rule

lerule }.

c=rule=a

c=rule=-b }.
c=rule=a: c=rulename ":" cdef-a

"=>" ctla "=>" csla,

cdef=a: + defpart.
defpart: { rulename | option ! terminal }.
option: "{" rulename "1",
ctla: headop "(" freelist ")".
headop: { head | pdf }.
head: "HEAD".
pdf: { (predefined functions) 1},
freelist: # freenode ";" ... .
freenode: freeop "," rulenanme.
freeop: { nt | copt }.
nts "NT",

*“coepT",

+ dispart,




dispart:
suotree:?
opdisfid:
optodf:
pdfodf:
undoat:

c=rule=bh:

cdef=b:
ctib:
cslib:
termpart:

a=rule?

adef:
attlist:
ale:e

atl:

ata:
alt-temp:
alt=t:
asl:

asa:
alt=daisp:

alt=d:

ierules

{ subtree ! literal | format },.

*"$" integer (opdisfid].

{ optodf | pdfodf ! undodf }.

ﬂ:ﬁ.[' ru'ename Nl‘.n.

H:"<~ ru‘ename l>~'~.

"= (* rulename *)""",
c=rulename ":" cdef=b
"z>" ctib "=>" cslb.,
terminal,
"HEAD," c¢=rulename,
+ termpart,
{ literal | format },
a=rulename ":" adef
"=>" atl "=>" at2 "=>"
“{" altlist "}",
# alt """ ...
altchar ":" rulename.
"ALT," a=rulename.
"{" alt=temp "}",
# alt=t "{" ...
altchar ": NT,” rulename,
"{" a~rulename "}".
“(" alt=disp "}",
# alted """ ... .
altchar ":" rulename,

i=rulename ":" idef

ast

":)I

asé.




idef:
itl:
ires
isl?
is2:

lerule:

Jerule=a:

ldef=a:

1tla:

1s2a:

l=rule=~b:

1def=b:

1tebe

182b:

lerule=c:

ldef=c:
1tlc:

1s2c:

s A R et e

w=>" el "=>" jg2 "=>" isl "=>" isdl.
"+" rulenamel.
"ITER ( NT," rulenamel "; I0OPT," 1=rulename ")".
"NT," rulenamel “; IOPT," i=rulename,
"st1".
"{*" i=rulename "1".
{ Y=rule-a
! Yeryle-b
! Yerule=c }.
Jerylename ":" ldef=a
"23® Jegl "=>" 1t2a "=>" 1s! "=>" 1g2a "=>" 1s3,
"#" rulenamel rulenamed "...".
"NT," rulename2 "; NT," rulenametl
"; LOPT," l1=rulename.
"$152".
l=rulename ":" |def=~b
"s>® g1 "=>" 1t2b "=>" 1s1 "=>" Is2b "=>" 1Is3.
"4* pylenamel " (" rylenameld "}J" "...".
"COPT," rulename2 "i NT," rulenamel
"; LOPT," l=rulename.
"$1=(" rulenamel "182".
l=rylename ":" ldefec
"=>® Jtl "=>" 1t2¢ "s>" 1si "=>" 1s2c¢c "=>" 1s3.
"#" rulenamel terminal "...".

"NT,” rulenamel "; LOPT," l=rulename.

terminal "S1%.
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lels "LIST ¢ NT,"” rulenamel "; LOPT," l=ruiename ")", }
Isls "s1", |
1832 "{" lerulename "1", ;
format: { newline | tab | untab }.

newline:? “NL".

tab: 18",

untab: "utT", ¥
extensions: userpdr userpdf. !
userpdr: (undefined) .

userpdf? (undefined) .




APPENDIX E: ILD GRAMMAR LANGUAGE DEFINITIOw !

ILD: langname rulelist (extensions]
> ILD,ILD
(NT,Strinqg;
NTerulelist;
COPT,extensions)

s> §i1="<langname>" 32 $3="fextensions)" .

rulelist: ¢+ rule
=> [TER,rulelist
(NT,rule;
I0OPT,rulelist)
2> NT,rule?
I10PT,rulelist
3> 31

=> "({rulelist"® .
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rule: { c=rule i
| 1

! a=ryle
i !

! i=rule

! lerule }
=> ALT,rule
=> { ctNT,c=rule
i a:NT,a=ryle
i 1NT,i=rule
{ 1eNT,leryle }
=> "{rule}”

2> "{ cie~ryle | ata=rule | isi=rule ; 1:l=rule }" .

cerule: { c=rule=-a
! c=ryle=p }
2> ALT,c=rule
2> { aic=rule-a
| btc=rule=b }
2> "{c-rule}”

2> *{ a:c=rule=a | bDic-rule=b }" ,
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c*rule=a: c-rulename

=>

>

cdef=a:

=2

=>

=2

-4

defpart:
2>

>

cdef=a
"=>" ctla "=>" csla
HEAD,c=rule=-a
(NT,String;
NY,cdef=a:
NT,ctla?
NT,csla)

$§1="<c=rylename>” ":" §2 "=>"

+ defpart
ITER,cdef~a
(NT,defpart;
IOPT,cdef=-a)
NT,defpart;
IOPT,cdef=a
31

*{defpart]”

{ rulename | ootior ! terminal }

ALT,defpart

{ rtNT,String

! o:NT,option

i t:NT,terminal }
"{detpart)}”

*{ r:rulename | otoption | t:iterminal

'll




’p—ﬁwf—w,me”_ - e~ N SO oy

options "(* rulename "1"
=> HEAD,option
(NT,String)

=> "{" $1="<rylename>" *1"

ctla:s headop "(" freelist ")"
=> HEAD,ctla !
(NT,headop: %
NT,freelist) f?
=>  §1 "(" s2 ") ., :
headop: { head | pdf }
=> ALT,headop
=> { h:NT,head
i P:NT,pdf}
=> “(headop}”
s> "{ hIHEAD | pipdf }” .
head: "HEAD" ]
=> HEAD,head é
=> ®HEAD" , {
pdf: { (predetined functions) ) ;

=> ALT,pdf

= {)

=> "{pdf)}"

=> )"




treelist: # treenode ";" ces

=>

>

nt:

LIST, freeljst
(NT, freenode;
LOPT, freelist)

NT, freenode:

LOPT, freelist

$1

i

"{freencdel” .,

freenode: freeop "," rulename

HEAD, freenode
(NT, freeop;
NT,String)

31 ";" s$2="<rylename>”

{ nt | copt }
ALT, freeop
{ n:NT,nt
i C:NT,copt )

"{freeop}"

"{ nINT |} c:COPT }* .

'er

HEAD,ﬂt

ONT™ .

[
{
1

PO




copt: “copt*"

=> HEAD,coDnt

=> "COPT" .

csla: + dispart
=> ]JTER,csla
(NT,dispart;
I10PT,cs1a)
=> NT,dispart;

I0PT,cs1a

R

=> 31

2> "({dispartl” ,

dispart? { subtree ! literal) | format }

vy il

=> ALT,disoart

2> { s:NT,subtree

; i 12NT,literal

| i fINT,format )
=> "{dispart)" ‘

=> "{ g:subtree ! 1:literal | f:formar )™ .

subtree: "$" integer (opdisfid]
=> HEAD,subtree
(NT,Integer;

COPT,opdistid)

s> "$" §1s3"<integer>"” $2="[opdistldl" .




opdisfld: ( optodf | pdfoaf | undodf }
3> ALT,opndisfid
2> { otNT,optodf
{ PINT,pdfodf
t UINT,undodf }
=> "{opdisfld}"

2> "{ o:optodf | pi:pdfodf | ustundodf }" .,

ootodft: "z®"* (" prulename ")"°""
=> HEAD,optodf
(NT,String)

=> .:ﬂ.[. sl="<ru‘ename>ﬂ ﬂ)“ﬂ“ o

pdtodf: "z ""<" rylename ">"""
=> HEAD,pdfodf
(NT,String)

=> I=~l<ﬂ sx-_-n(ru‘lename,” L AL .

i undodf: "z (" pulename ")"""
=> HEAD,undodf
(NT,String)

=9 .=ﬂ-(ﬂ Sl-'<ru‘ename>ﬂ ‘)..' .
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c=rule=b: cwrulename “:" cdef-b
»2>" ctib "=>" cslo
=> HEAD,c=rule-b
? (NT,Strings
F NT,cdef=b;
NT,ctlo?
NT,cs1b)

2> $1s"<cerulename>" ":* §2 "=>" §3 "=>" 4 .

cdef-b: terminal
s> HEAD,cdef=b

(NT,terminal)

=> $t .

ctib: “HEAD,"™ c~=rulename
=> HEAD,ctlDd
(NT,String)

=>» “HEAD,"™ Si1z"<c=rulename>” .

] csib: + termpart
=> JTER,cslDp
(NT,termpart;
[0PT,cs1Db)
z=> NT,termpart’
I0PT,csib
=> §1

2> "(termpart]” .
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termpart: { literal | format )
=> ALT,termpart
2> { 1:NT,literal
i feNT,format }
=> "{termpart}”

s> "{ 1:literal ! f:format )" .

a~ryle: a=rulename ":" adef
"=>" atl "=>" at2 "=>" asl "=>" as?
=> HEAD,a~rule
(NT,S8tring;
NT,adet;
NT,atl;
NT,at2;
NT,aslt;
NT,as2)
=> $1="<a=rulename>” ":" §2

“=>" §3 "=>" 84 "=>" §5 "=>" %o .

adef: (" altlist ")"
2> HEAD,adef
(NT,altlist)

=> " alelist ")"
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=>

"
v

!

altlist: % alt "i" ..,

LIST,altlist
(NT,alt;
LOPT,altlist)
NT,alt;
LOPT,altlist
st
$1

“"laltlisz)” ,

altchar ":" rulename
HEAD,alt
(NT,Character;
NT,String)

$13"<altchar>® ";" $2="<rulename>"

"ALT," a=rulename
HEAD'atl
(NT,String)

“ALT,” S$l1z="<ca=ryulename>" .

*"{" alt=temp ")"
HEAD,at?2
(NT,alt=temp)

(" $1 ")~ ,
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alt=temp: % alt=t "}" ..,

=> LIST,altetemp

o <. -

(NT,alt=t;
LOPT,alt~temp)
> NT,altet;
LOPT,alt=temp
> $1

=> 31

=> "lalt=t]l" ,

alt=t: altchar "2 NT," rulename
2> HEAD,alt=¢t
(NT,Character;

NT,String)

2> $1="<altchar>®™ ": NT," $2="<prylename>" ,

asl: *{" a=rulename ")"

> HEAD,ast

(NT,3tring)

2> "(" $1="<a=rulename>" ")} ,

as2: *{" altecdisp ")}"
2> HEAD,as?
(NT,alt=d{sp)

> "{" 3 ")" .,
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alt=qgisp: # alted """ .,

=> LIST,altdisp
(NT,alt=d;
LOPT,alt=disp)

=> NT,alt=d;

LOPT,alt=disp
=> 31
> $t

2> "flaltedisol" .

alt=d: altchar ":" rulename
2> HEAD,alt=d
{NT,Character;

NT,3tring)

2> S$i{="<altchar>™ ":" §2="<pyiename>"” .

i*rule: i=ruylename ":" jdef

"=>" el "=>" jt2 "=>" jg| “=>m ise

2> HEAD,{=ryle
(NT,String;
NT,idef;
NT,fel;
NT,it2;
NT,is1;

NT,is2)

=> $13"<i=rylename>" ":" $2

"=>" §3 "=y gy "=pw $S "=>" s .




idef:

itls

itae

isl:

is2t

>

"+" rulenamel
HEAD, idef
(NT,String)

"y® g12"<pulenamel>”

"ITER ¢ NT," rulenamel "¢ IOPT," ierulename ")"
HEAD,it1
(NT,String;
NT,String)
"ITER ( NT," S$1z"<rulenamel>® *; IUPT,"

§23"<ierulename>" .

*NT," rulenamel "; IOPT," i-rulename
HEAD,it2
(NT,String’
NT,String)

*NT," $13"<rulenamel>” "; IOPT," $2="<j=rulename>"

'sl'
HEAD,ist

‘slﬂ

*(" i=rylename "1*
HEAD, isg2
(NT,String)

*(" Siz="<i=rulename>” "1" .
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lerule: { '=rule=a L

! lepule=b ‘

! Y=rule=¢c } [
s> ALT,)1=rule
=> { a:NT,l=rule~a
} biNT,1erule=b
V CINT,V=rule=c }

2> "{jepylel}”

=> "{ a:l~rule=a | b:l=rule~b ! c:l=rule=-c }" . .

[ N ———
s ey

leruyle=a: l=rylename ":" ldef~a
ra>" Ttl *=>" 1t2a "=>" 151 "=>" |s2a "=>" 1393
=> HEAD,Y=ryle-a
(NT,String?
NT,l1def=a;
NT, el

NT,Vt2a;

NT,181; 1

NT,V1s2as
NT,183)
! 2> §iz="<l=rylename>™ ":" §2

W=>" §3 "=2" g4 "=>" $S "=>" $6 "=>" $7 .




1def=a: "#" rylename! rulename2 ".,." i

s> HEAD,1def=~a y

(NT,String; |
NT,String)

=> "#" $13"<rulenameld>” $2="<rulename2>" ".,.." .

1tla: *NT," rulename2 "; NT," rulenamel
" LOPT," lepylename

=> HEAD,1t2a

}
}

{
|
3
o
4

(NT,String;
NT,8tring’
NT,String)
=> "NT," $1z"<rulename2>” "; NT,"” $2="<rulenamel>"

" LOPT," 83="<lepylename>" ,

1s2a: *$1852"
=> HEAD,182a

=> "s182" .




J=rule=b: I=rulename ":" ldef=b
*z=>" |t} "=>" 1t2b "=2>" 1sl "=>" |s2lb "=>" 133
=> HEAD,l=rule=~b
(NT,String;
NT,1def=b;}
NT,'et;
NT,1t2b;
NT,Vs81;
NT,Vs2bs
NT,183)
2> §1="<)leprylenamed>” ":" §2

"=>" $§3 ®=>" §4 "=>" §S5 "=>" Fo "=>" 37 .

ﬂ]' '..."

ldef=b: "#" rulenamel "({” rulename?l

=> HEAD,l1def=b

(NT,String;

COPToString)

=> *4" $1z="<rylenamel>™ " ([” $2="<prulenamee>” "1™ ",.." .

1t2b: "COPT," rulenamel "; NT," rulenamel
"; LOPT," lerylename
2> HEAD.‘th

(COPT,String;

NT,Strings?
NT,String)
2> "COPT," S$1z="<rulename2>" "; NT," $2="<rylenamel>"

"2 LOPT,” $3="<l=rulename>" ,




1s2b: "$1=(" rulename2 "132"

=> HEAD,1s2b
(NT,String)

=> "S$i=(" Si="<rulename2>" "“132" .

l=ryle~=¢c: lerylename ":" ldef-c y
"=3>" Jtl "=>" 1t2c "=>" Isi "=>" Jg2¢ "=>" 183 (

=> HEAD,Y=ryle=c

(NT,String’ f
NT,1def=c;
NT,1t1; ;
NT,1tc?
NT,181;
NT,Vs2cs 14
NT,1s83)

2> $1=2"<l=pylenamed>” ":" $2 H

w=>" $3 "=>" $4 "=>" $§5 "=>" $o "=>" $7

ldef=c: "#" rulenamel! terminal ",.."
z> HEAD,ldef=c

(NT,String;

NT,terminal)

2> -”. Sl='<rulenamel>' sa ".oo“ .
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1tles

"NT," rulenamel "; LOPT,” lerylen:me
HEAD,1t2¢
(NT,String;
NT,String)

SNT," $1z"<ryulenamel>” "LOPT,™ $2="<lepruyiename>»"

terminal "$1°"
HEAD,1s2¢
(NT,terminal)

$1="<terminal>" "s1" ,

"LIST ( NT," rulenamel "; LOPT," J=rulename ")"
HEAD,1¢t!
(NT,String’
NT,String)
"LIST ( NT,"™ $1="<ruylenamel>" "; LOPT,"

§2="<l=rulename>»" ") ,

's‘.
HEAD,1st

"sL1" .

"{" lerulename "1*
HEAD, 183
{(1=rulename)

(" $1="<l=ryulename>" "1" ,

1ed




terminal: literal
=> Head,terminal
(NT,String)

=> neNn sl="<tel‘ﬂ”na|>~ L N N

literal: literal
=> Head,literal
(NT,String)

=9 LA K A J $x=~<"'tera‘>ﬂ nenn

format: { newline { tab |} untab }

s> ALT,format
=> { n:NT,newline
} t:NT,tab
{ utNT,untab }
=> *"{(format}”

=> "{ n:newline ! t:tab ! usuntab }"

newline: "NL"
2> HEAD,newline

=> *NL"

tab:? "TB8"
=> HEAD,tab

= *T8" .
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extensions?

D>

=

userpdr:

userpdf:

St l‘ing,

“UT‘
MEAD,untab

wyr"

HEAD,extensions
(NT,userpdr;
NY,userndf?)

$1 $2 .

(undefined)

(undefined)

Integer, and Character are systenm

aniintsiumetiis,

userpdr userpdf

106
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APPENDIX F: MEMORANDUM LANGUAGE DEFINITION

The following Language Definition, constructed by hana,

illustrates ¢the templates and schemas required for the de~
finition of 3 simpole grammar., When realized as an AST via
the ILD Grammar Directed Editor and interpreted by the sys- ﬂ

tem predefined function ILD, this Language Definition could

be installed in the Language Definition Module as oart of a

Memorandum GDE.

memo: {sajutation] body [closing]
=>ILD,memo
(COPT,salutation;
NT,body;

COPT,closing)

=>NL S1="(salutation]™ $2 NL T8 TB TB $3z"{closingl".
salutation:"Dear" name "," 5
=>HEAD,salutation )

|

H

(NT,String)

=>"Dear” $1="<name>" "," .

body: ¢+ paragraph
=>[TER,body

(NT,paragraph?

IGPT,boay)




=>NT,paragrach;

IOPT,body
=>NL T8 UT §!

=>NL " [paraqraphl"™ .,

paragraph: + lines

s>[TER,paragraph
(NT,String;
I0PT,paragraph)
=>NT,String;’
I0OPT,paragraph
>81="<line>" NL

=>"[linel™ NL .

closing:"Sincereiy,” name
=>HEAD,closing
(NT,String)

=»"Sincerely," NL $1="<name>" ,

String is a system predefined rule.,

to8
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APPENUTA Gt  S5YSTEM P=FEUFFTUED FHLCTTOMNS ‘

The followina 1s 3 list of orogrammina  lanouage primy -

tive ooerations, Herived in part trom [rratt,1975;, wnich

coula pe implemented as System Pregefineu Functions, I[~1s
list is not 1intengea as a comprehensive collectinn of *ne
orimitives Aesired, or even reauired, for imclementation of
a GNE system. Rather, these functions are oresented here J<
an indication of the classes of operations which mianf e

mage availahie in supoort of users of the LNE.

Svnthesis uUoerators

1. NT
2. COPT
3. 10PT
4., LOPT
9. ALT
b. TFERM
7. nEAD
3. ITER ]
9, LTI3Y

Aritnmetic Operators F
10. PLUS f
fl. MINUS t
12, ML multiplication




13. DIv division j
14, REM remainder |
” 1S. UPLUS unary plus
? fo, UMINUS unary minus

Relationa)l Operators

Boolean Operators

17, EQUAL equality

18, NTEGQ not equal q
19. GT greater than i
20, LT less than ;
21, GTE greater than or equal }
22. LTE less than or equal €

23. AND

24, OR 1
R 3
' 25. NOT

Assignment Operators

26. ASNA arithmetic assianment

27. ASNS string assignment

Sequence Control Operators
28, COND if=then-else conditional
29. LOOP generalized loop
30. CASE




FRPERPPRS

Symbo! Table and Data Element Uperators

32. DECLARE

33, BLOCK
34, IDENT
3S. NUMBER
36. STRING

System Operators

31, ILOD

Miscellaneous

38. NOP

declaration

identifier

AST to Language Definition transliation

null operation

t71




APPENDIX H, FIGURES

<root>
A

! v v T T 2 g
program <id> ( <names> ) ; <block>
f
tree <id> l(names)
|

" T
inout ; <id> l(mames)

output

' 1 T T —T Y ~—
ol1) o(t) ol(v) o(sr) begin <statements> end

N
f f
<vars> <statement> l(statements)
1 L
i T 1 R 1.
var <v=decls> ; olinteger) olaction)
Ly |
] 1 ) | R
<names> <type> <assignment>
i
v i Y 1
<ig> l(names) <id> <variable> (= <expr>
a integer <id> o(modifiers) <s=expr>
a o(sign) <uy-expr>
Note: non-=terminal names <term>
I
have been abbreviated. <factor>
<y=0or=Cc>
proqaram tree (input,output)’ <y-constant>
var : &’ l
begin 1
a := 1
end.

Figure 1. Parse tree for a trivial program,
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CONCATENATION:
c ¢ «xl xa’... xn . xk = { rk § "{"rk™)1" tk )
<rk> if xk = rK
<c> =>
coptirk) if xk = "(opk"l"
coptir) => <r>
ALTERNATION?
a : .{l “l ﬂ:. ’.a n:" .o LN} r.n ﬂ)'l
<a> =» { <rl> | <Pr2> | eee i <PN2 }
ITERATION:
i3 "o
<i> => «<er> iopt(i)
iopt(i) => <> dopt(i)
LIST:
1 ¢ "8#" r1 x "eoo" ' x = { r2 ) "(%e2™I" {1 t }
<1> s> <«<ri> lopt(l)
<r2> <rl> lopt(l) if x = r2
lopt(1) => copti(r2) <«ri> lopt(l) it x = ni¥pa"l"
<rl> lopt()) if x = ¢t
PREDEFINED:
p : pdf
<p> =>» pdf(p)
UNDﬁFINED:
<y> => <y>
¢ in C = { concatenation rules }
a in A = { alternation rules }
i in I = { iteration rules )
] inL = { list rules )
p in P = { predefined ruies )
u in U = { undefined rules )
r in R = { ?"ploL:P'U }
t in T = ( terminal symbols }
Figure 2. Transformations
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CONCATENATIO
[ :.xl 2 o

NT,¢c

CoPT,r

ALTERNATION:
a : "{t" "

NT,a

ITERATION:
i "

NT i
10PT,i

LIST:
P ¢ "#" rl x

NT,1

LOPT,
PREDEFINED:
p : pdf

NT,p

UNDEFINED:

Nf,u

A3 LC 0 == O
=

NS

« AN ’ xk = { Pk ) "["rk")" | tk )}

NT,rk it xk = rk

COPT.rk if xk = "({"rk"]"

=> NT,r
:. ra I:ll .o N:N rn n,u
=> { NT:PI : NT'PE : es e : NI'P”
=> NT,r I0PT,i
=> NT,r I10PT,i
®eee” ’ x = { r2 { "{"r2")" |
=> NT.r! LOPT,t
NT,r2 NT,erl LOPT,I| if x
=> COPT,r2 NT,rl LOPT,) it x
NT,el LOPT,I if x

=> PDF(p),p

v

NT'U

concatenation rules )}
alternation rules }
iteration ruiles }
list rules )
predefined rules }
undefined rules )
CrA,I,L,PyU }
terminal symbols )}

Mo untn
O i e e ahe S A

- D C Orm>»0

Figure 3. Labelled Transformations
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|

CONCATENATION: ¥

€ x1 %2 .40 xn ’ xk = { rk } "{"rk"1" | tk ) y
NT,rk if xk = rk

NT,c => l,

COPT,rk if xk = "{"pk")]"

COPT(F => NT,I‘

ALTERNAT]ION:
3 "{" rl "1 r2 "M see "I" P M)
NT,a => ALT,a
ALT,a 2> { NT,rl § NTyr2 | coee § NT,rn }
ITERATION: %
i "o ]
NT,§ => NT,r I0PT,i ;
{ I10PT, 2> NT,r I0PT,i i
5 L
}
E LIST:
| 13 "8 r1 o x "..." ’ x 2 { er2 3 "["pr2"I" | t } i
NT, => NT,r1l LOPT,I %
NT,r2 NT,rl LOPT,} if x = r2
LOPT,} => COPT,r2 NT,rl LOPT,I if x = "["p2" )"
Nl',rl LOPT,] if x =t ’ i
PREDEF INED: ’
p : pdf {
i
NTyp => TERM,p ;
TERM,p => POF(p),p
UNDEF INED:
NT,u 2> NT,u
c in C = { concatenation rules }
a in A =2 ( alternation rules }
i in f = { iteration rules } t
1 in L 3 { list rules } !
{ P in P = ( predefined rules } :
] U in U 2 { undefined rules }
1 r fin R = { COAiloLnPlu }
! t in T 2 { terminal symbols }

Figure 4. Extended Transformations
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GRAMMAR-DRIVEN ENVIRONMENT

.
—
DATA STRUCTURE SUPPORT
SUBSYSTEM
’i\
J
1 MAIN MEMORY| 0
N u
P ’ T
Y] P
T fk U
ONLOAD OFFLOAD T
M TRANSLATOR TRANSLATOR
A — M
N A
I N
F I
0 F
L SECONDARY 0
D STORAGE L
0
)
KEYBOARD TERMINAL scassggj

Figure S. System Architecture (Data Flow)
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